|
--- |
|
base_model: yanolja/EEVE-Korean-Instruct-10.8B-v1.0 |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- gguf |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** saemzzang |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** yanolja/EEVE-Korean-Instruct-10.8B-v1.0 |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
``` |
|
model = FastLanguageModel.get_peft_model( |
|
model, |
|
r=8, # 0λ³΄λ€ ν° μ΄λ€ μ«μλ μ ν κ°λ₯! 8, 16, 32, 64, 128μ΄ κΆμ₯λ©λλ€. |
|
lora_alpha=16, # LoRA μν κ°μ μ€μ ν©λλ€. |
|
lora_dropout=0.05, # λλ‘μμμ μ§μν©λλ€. |
|
target_modules=[ |
|
"q_proj", |
|
"k_proj", |
|
"v_proj", |
|
"o_proj", |
|
"gate_proj", |
|
"up_proj", |
|
"down_proj", |
|
], # νκ² λͺ¨λμ μ§μ ν©λλ€. |
|
bias="none", # λ°μ΄μ΄μ€λ₯Ό μ§μν©λλ€. |
|
# True λλ "unsloth"λ₯Ό μ¬μ©νμ¬ λ§€μ° κΈ΄ 컨ν
μ€νΈμ λν΄ VRAMμ 30% λ μ¬μ©νκ³ , 2λ°° λ ν° λ°°μΉ ν¬κΈ°λ₯Ό μ§μν©λλ€. |
|
use_gradient_checkpointing="unsloth", |
|
random_state=123, # λμ μνλ₯Ό μ€μ ν©λλ€. |
|
use_rslora=False, # μμ μμ ν LoRAλ₯Ό μ§μν©λλ€. |
|
loftq_config=None, # LoftQλ₯Ό μ§μν©λλ€. |
|
) |
|
|
|
from trl import SFTTrainer |
|
from transformers import TrainingArguments |
|
|
|
tokenizer.padding_side = "right" # ν ν¬λμ΄μ μ ν¨λ©μ μ€λ₯Έμͺ½μΌλ‘ μ€μ ν©λλ€. |
|
|
|
# SFTTrainerλ₯Ό μ¬μ©νμ¬ λͺ¨λΈ νμ΅ μ€μ |
|
trainer = SFTTrainer( |
|
model=model, # νμ΅ν λͺ¨λΈ |
|
tokenizer=tokenizer, # ν ν¬λμ΄μ |
|
train_dataset=dataset, # νμ΅ λ°μ΄ν°μ
|
|
eval_dataset=dataset, |
|
dataset_text_field="text", # λ°μ΄ν°μ
μμ ν
μ€νΈ νλμ μ΄λ¦ |
|
max_seq_length=max_seq_length, # μ΅λ μνμ€ κΈΈμ΄ |
|
dataset_num_proc=2, # λ°μ΄ν° μ²λ¦¬μ μ¬μ©ν νλ‘μΈμ€ μ |
|
packing=False, # 짧μ μνμ€μ λν νμ΅ μλλ₯Ό 5λ°° λΉ λ₯΄κ² ν μ μμ |
|
args=TrainingArguments( |
|
per_device_train_batch_size=2, # κ° λλ°μ΄μ€λΉ νλ ¨ λ°°μΉ ν¬κΈ° |
|
gradient_accumulation_steps=4, # κ·ΈλλμΈνΈ λμ λ¨κ³ |
|
warmup_steps=5, # μμ
μ€ν
μ |
|
num_train_epochs=3, # νλ ¨ μν μ |
|
max_steps=120, # μ΅λ μ€ν
μ |
|
do_eval=True, |
|
evaluation_strategy="steps", |
|
logging_steps=1, # logging μ€ν
μ |
|
learning_rate=2e-4, # νμ΅λ₯ |
|
fp16=not torch.cuda.is_bf16_supported(), # fp16 μ¬μ© μ¬λΆ, bf16μ΄ μ§μλμ§ μλ κ²½μ°μλ§ μ¬μ© |
|
bf16=torch.cuda.is_bf16_supported(), # bf16 μ¬μ© μ¬λΆ, bf16μ΄ μ§μλλ κ²½μ°μλ§ μ¬μ© |
|
optim="adamw_8bit", # μ΅μ ν μκ³ λ¦¬μ¦ |
|
weight_decay=0.01, # κ°μ€μΉ κ°μ |
|
lr_scheduler_type="cosine", # νμ΅λ₯ μ€μΌμ€λ¬ μ ν |
|
seed=123, # λλ€ μλ |
|
output_dir="outputs", # μΆλ ₯ λλ ν 리 |
|
), |
|
) |
|
``` |
|
|