metadata
language: it
datasets:
- xtreme
Italian-Bert (Italian Bert) + POS ππ·
This model is a fine-tuned on xtreme udpos Italian version of Bert Base Italian for POS downstream task.
Details of the downstream task (POS) - Dataset
Dataset | # Examples |
---|---|
Train | 716 K |
Dev | 85 K |
Labels covered:
ADJ
ADP
ADV
AUX
CCONJ
DET
INTJ
NOUN
NUM
PART
PRON
PROPN
PUNCT
SCONJ
SYM
VERB
X
Metrics on evaluation set π§Ύ
Metric | # score |
---|---|
F1 | 97.25 |
Precision | 97.15 |
Recall | 97.36 |
Model in action π¨
Example of usage
from transformers import pipeline
nlp_pos = pipeline(
"ner",
model="sachaarbonel/bert-italian-cased-finetuned-pos",
tokenizer=(
'sachaarbonel/bert-spanish-cased-finetuned-pos',
{"use_fast": False}
))
text = 'Roma Γ¨ la Capitale d'Italia.'
nlp_pos(text)
'''
Output:
--------
[{'entity': 'PROPN', 'index': 1, 'score': 0.9995346665382385, 'word': 'roma'},
{'entity': 'AUX', 'index': 2, 'score': 0.9966597557067871, 'word': 'e'},
{'entity': 'DET', 'index': 3, 'score': 0.9994786977767944, 'word': 'la'},
{'entity': 'NOUN',
'index': 4,
'score': 0.9995198249816895,
'word': 'capitale'},
{'entity': 'ADP', 'index': 5, 'score': 0.9990894198417664, 'word': 'd'},
{'entity': 'PART', 'index': 6, 'score': 0.57159024477005, 'word': "'"},
{'entity': 'PROPN',
'index': 7,
'score': 0.9994804263114929,
'word': 'italia'},
{'entity': 'PUNCT', 'index': 8, 'score': 0.9772886633872986, 'word': '.'}]
'''
Yeah! Not too bad π
Created by Sacha Arbonel/@sachaarbonel | LinkedIn
Made with β₯ in Paris