|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-finetuned-jb-t5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-jb-t5 |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Rouge1: 99.3236 |
|
- Rouge2: 99.2849 |
|
- Rougel: 99.323 |
|
- Rougelsum: 99.3279 |
|
- Gen Len: 16.7815 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 235 | 0.0013 | 99.3122 | 99.2729 | 99.3126 | 99.3178 | 16.7831 | |
|
| No log | 2.0 | 470 | 0.0001 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0599 | 3.0 | 705 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0599 | 4.0 | 940 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0017 | 5.0 | 1175 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0017 | 6.0 | 1410 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0009 | 7.0 | 1645 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0009 | 8.0 | 1880 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0007 | 9.0 | 2115 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0007 | 10.0 | 2350 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0007 | 11.0 | 2585 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0007 | 12.0 | 2820 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0006 | 13.0 | 3055 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0006 | 14.0 | 3290 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
| 0.0006 | 15.0 | 3525 | 0.0000 | 99.3236 | 99.2849 | 99.323 | 99.3279 | 16.7815 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|