ChatVector
Collection
モデル間の重みの加減算のみで構築した日本語LLM
•
3 items
•
Updated
•
1
非商用ライセンスで公開します。
Tora-7B-v0.2 = NTQAI/chatntq-ja-7b-v1.0 + (NousResearch/Hermes-2-Pro-Mistral-7B - mistralai/Mistral-7B-v0.1)
@jovyan様の実装を参考に下記のコードでモデルを作成しました。
import torch
from transformers import AutoModelForCausalLM
def build_chat_vector_model(
base_model_name,
inst_model_name,
target_model_name,
skip_layers,
):
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
inst_model = AutoModelForCausalLM.from_pretrained(
inst_model_name,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
target_model = AutoModelForCausalLM.from_pretrained(
target_model_name,
torch_dtype=torch.bfloat16,
device_map="cuda",
)
# 英語ベースモデル
for k, v in base_model.state_dict().items():
print(k, v.shape)
# 日本語継続事前学習モデル
for k, v in target_model.state_dict().items():
print(k, v.shape)
# 除外対象
skip_layers = ["model.embed_tokens.weight", "lm_head.weight"]
for k, v in target_model.state_dict().items():
# layernormも除外
if (k in skip_layers) or ("layernorm" in k):
continue
chat_vector = inst_model.state_dict()[k] - base_model.state_dict()[k]
new_v = v + chat_vector.to(v.device)
v.copy_(new_v)
target_model.save_pretrained("./chat_model")
return
if __name__ == '__main__':
base_model_name = "mistralai/Mistral-7B-v0.1"
inst_model_name = "NousResearch/Hermes-2-Pro-Mistral-7B"
target_model_name = "NTQAI/chatntq-ja-7b-v1.0"
skip_layers = ["model.embed_tokens.weight", "lm_head.weight"]
build_chat_vector_model(
base_model_name=base_model_name,
inst_model_name=inst_model_name,
target_model_name=target_model_name,
skip_layers=skip_layers
)
model | category | score | ver |
---|---|---|---|
Tora-7B-v0.2 | Writing | 3.8 | single-turn |
Tora-7B-v0.2 | Roleplay | 7.1 | single-turn |
Tora-7B-v0.2 | Reasoning | 6.3 | single-turn |
Tora-7B-v0.2 | Math | 3.0 | single-turn |
Tora-7B-v0.2 | Coding | 2.2 | single-turn |
Tora-7B-v0.2 | Extraction | 6.6 | single-turn |
Tora-7B-v0.2 | STEM | 7.2 | single-turn |
Tora-7B-v0.2 | Humanities | 8.2 | single-turn |
ChatVectorの記事を執筆してくださった@jovyan様に深くお礼申し上げます。