metadata
library_name: transformers
license: apache-2.0
language:
- ja
- en
Model Merge
Gakki-7B was build by Chat Vector
A recipe shows as below
Rakuten/RakutenAI-7B-instruct + (prometheus-eval/prometheus-7b-v2.0 - mistralai/Mistral-7B-Instruct-v0.2)
Source Code
import torch
from transformers import AutoModelForCausalLM
def build_chat_vector_model(
base_model_name,
inst_model_name,
target_model_name,
skip_layers,
):
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
inst_model = AutoModelForCausalLM.from_pretrained(
inst_model_name,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
target_model = AutoModelForCausalLM.from_pretrained(
target_model_name,
torch_dtype=torch.bfloat16,
device_map="cuda",
)
# 英語ベースモデル
for k, v in base_model.state_dict().items():
print(k, v.shape)
# 日本語継続事前学習モデル
for k, v in target_model.state_dict().items():
print(k, v.shape)
# 除外対象
skip_layers = ["model.embed_tokens.weight", "lm_head.weight"]
for k, v in target_model.state_dict().items():
# layernormも除外
if (k in skip_layers) or ("layernorm" in k):
continue
chat_vector = inst_model.state_dict()[k] - base_model.state_dict()[k]
new_v = v + chat_vector.to(v.device)
v.copy_(new_v)
target_model.save_pretrained("./Gakki-7B")
return
if __name__ == '__main__':
base_model_name = "mistralai/Mistral-7B-Instruct-v0.2"
inst_model_name = "prometheus-eval/prometheus-7b-v2.0"
target_model_name = "Rakuten/RakutenAI-7B-instruct"
skip_layers = ["model.embed_tokens.weight", "lm_head.weight"]
build_chat_vector_model(
base_model_name=base_model_name,
inst_model_name=inst_model_name,
target_model_name=target_model_name,
skip_layers=skip_layers
)