metadata
library_name: transformers
license: apache-2.0
base_model: Xrenya/pvt-small-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: pvt-small-224-finetuned-papsmear
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.2426470588235294
pvt-small-224-finetuned-papsmear
This model is a fine-tuned version of Xrenya/pvt-small-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Accuracy: 0.2426
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0 | 0.9935 | 38 | nan | 0.2426 |
0.0 | 1.9869 | 76 | nan | 0.2426 |
0.0 | 2.9804 | 114 | nan | 0.2426 |
0.0 | 4.0 | 153 | nan | 0.2426 |
0.0 | 4.9935 | 191 | nan | 0.2426 |
0.0 | 5.9869 | 229 | nan | 0.2426 |
0.0 | 6.9804 | 267 | nan | 0.2426 |
0.0 | 8.0 | 306 | nan | 0.2426 |
0.0 | 8.9935 | 344 | nan | 0.2426 |
0.0 | 9.9869 | 382 | nan | 0.2426 |
0.0 | 10.9804 | 420 | nan | 0.2426 |
0.0 | 12.0 | 459 | nan | 0.2426 |
0.0 | 12.9935 | 497 | nan | 0.2426 |
0.0 | 13.9869 | 535 | nan | 0.2426 |
0.0 | 14.9020 | 570 | nan | 0.2426 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1