rukundob451's picture
Model save
51554f0 verified
metadata
library_name: transformers
license: apache-2.0
base_model: Xrenya/pvt-small-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: pvt-small-224-finetuned-papsmear
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2426470588235294

pvt-small-224-finetuned-papsmear

This model is a fine-tuned version of Xrenya/pvt-small-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Accuracy: 0.2426

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0 0.9935 38 nan 0.2426
0.0 1.9869 76 nan 0.2426
0.0 2.9804 114 nan 0.2426
0.0 4.0 153 nan 0.2426
0.0 4.9935 191 nan 0.2426
0.0 5.9869 229 nan 0.2426
0.0 6.9804 267 nan 0.2426
0.0 8.0 306 nan 0.2426
0.0 8.9935 344 nan 0.2426
0.0 9.9869 382 nan 0.2426
0.0 10.9804 420 nan 0.2426
0.0 12.0 459 nan 0.2426
0.0 12.9935 497 nan 0.2426
0.0 13.9869 535 nan 0.2426
0.0 14.9020 570 nan 0.2426

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1