roberta / README.md
rubakha's picture
Training in progress epoch 2
4365e0f
|
raw
history blame
2.32 kB
metadata
license: apache-2.0
base_model: distilroberta-base
tags:
  - generated_from_keras_callback
model-index:
  - name: rubakha/roberta
    results: []

rubakha/roberta

This model is a fine-tuned version of distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1366
  • Train Accuracy: 0.942
  • Validation Loss: 0.1600
  • Validation Accuracy: 0.9420
  • Train Precision: 0.9442
  • Train Recall: 0.942
  • Train F1: 0.9417
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Train Precision Train Recall Train F1 Epoch
0.4729 0.928 0.2098 0.9280 0.9292 0.928 0.9275 0
0.1705 0.94 0.1964 0.9400 0.9434 0.94 0.9395 1
0.1366 0.942 0.1600 0.9420 0.9442 0.942 0.9417 2

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2