gemma-finetuning
This model is a fine-tuned version of google/gemma-2b on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 2.1674
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training Hardware
Intel(R) Data Center GPU Max 1100
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 593
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8606 | 0.82 | 100 | 2.5425 |
2.4479 | 1.64 | 200 | 2.3304 |
2.3077 | 2.46 | 300 | 2.2351 |
2.2398 | 3.28 | 400 | 2.1914 |
2.2083 | 4.1 | 500 | 2.1674 |
Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.0.1a0+cxx11.abi
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 4
Model tree for rppadmakumar/gemma-2b-finetuned
Base model
google/gemma-2b