File size: 7,141 Bytes
64967ea
 
 
 
765fb8c
64967ea
 
 
 
 
b2d3244
 
252e580
3d87c53
b2d3244
 
 
64967ea
 
 
 
252e580
 
64967ea
 
62592d7
64967ea
 
 
252e580
 
 
 
 
 
 
 
 
 
 
 
 
765fb8c
 
 
 
 
 
 
252e580
 
 
 
 
 
 
 
 
 
 
 
8a3b670
 
64967ea
8a3b670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9649eed
8a3b670
 
 
 
 
 
 
 
9649eed
 
8a3b670
 
 
 
 
 
9649eed
8a3b670
 
 
 
 
 
9649eed
8a3b670
64967ea
c3a4b82
64967ea
5d103dc
64967ea
 
02dacc4
 
64967ea
 
 
 
a005325
 
62592d7
a005325
 
62592d7
9649eed
 
 
a005325
9649eed
a005325
62592d7
 
a005325
 
 
64967ea
 
 
 
 
 
9649eed
 
 
64967ea
 
9649eed
64967ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec0a4d2
64967ea
ec0a4d2
64967ea
 
ec0a4d2
 
64967ea
ec0a4d2
 
64967ea
 
 
765fb8c
64967ea
765fb8c
9649eed
765fb8c
64967ea
765fb8c
64967ea
765fb8c
9649eed
64967ea
a35ec72
 
 
 
 
04ecb59
 
a35ec72
 
 
 
b54ced2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
language: en
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- en
- hf-asr-leaderboard
- mozilla-foundation/common_voice_6_0
- robust-speech-event
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 English by Jonatas Grosman
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice en
      type: common_voice
      args: en
    metrics:
    - name: Test WER
      type: wer
      value: 19.06
    - name: Test CER
      type: cer
      value: 7.69
    - name: Test WER (+LM)
      type: wer
      value: 14.81
    - name: Test CER (+LM)
      type: cer
      value: 6.84
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: en
    metrics:
    - name: Dev WER
      type: wer
      value: 27.72
    - name: Dev CER
      type: cer
      value: 11.65
    - name: Dev WER (+LM)
      type: wer
      value: 20.85
    - name: Dev CER (+LM)
      type: cer
      value: 11.01
base_model:
- jonatasgrosman/wav2vec2-large-xlsr-53-english
---
# Disclaimer and Requirements

This model is a clone of [**jonatasgrosman/wav2vec2-large-xlsr-53-english**](https://huggingface.co./jonatasgrosman/wav2vec2-large-xlsr-53-english) compressed using ZipNN. Compressed losslessly to 88% its original size, ZipNN saved ~0.2GB in storage and potentially ~4PB in data transfer **monthly**.

### Requirement

In order to use the model, ZipNN is necessary:
```bash
pip install zipnn
```
### Use This Model
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
from zipnn import zipnn_hf

zipnn_hf()


pipe = pipeline("automatic-speech-recognition", model="royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed")
```
```python
# Load model directly
from transformers import AutoProcessor, AutoModelForCTC
from zipnn import zipnn_hf

zipnn_hf()

processor = AutoProcessor.from_pretrained("royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed")
model = AutoModelForCTC.from_pretrained("royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed")
```
### ZipNN
ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.

To compress the cached model, simply run:
```bash
python zipnn_compress_path.py safetensors --model royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed --hf_cache
```

The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).

To decompress manualy, simply run:
```bash
python zipnn_decompress_path.py --model royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed --hf_cache
```

# Fine-tuned XLSR-53 large model for speech recognition in English

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53) on English using the train and validation splits of [Common Voice 6.1](https://huggingface.co./datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows...

Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:

```python
from huggingsound import SpeechRecognitionModel
from zipnn import zipnn_hf

zipnn_hf()

model = SpeechRecognitionModel("royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from zipnn import zipnn_hf

zipnn_hf()

LANG_ID = "en"
MODEL_ID = "royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| "SHE'LL BE ALL RIGHT." | SHE'LL BE ALL RIGHT |
| SIX | SIX |
| "ALL'S WELL THAT ENDS WELL." | ALL AS WELL THAT ENDS WELL |
| DO YOU MEAN IT? | DO YOU MEAN IT |
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION |
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q |
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTIAN WASTIN PAN ONTE BATTLY |
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER |
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |

## Evaluation

1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`

```bash
python eval.py --model_id royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed --dataset mozilla-foundation/common_voice_6_0 --config en --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

## Citation
If you want to cite this model you can use this:

```bibtex
@misc{grosman2021xlsr53-large-english,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {E}nglish},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co./jonatasgrosman/wav2vec2-large-xlsr-53-english}},
  year={2021}
}
```