royleibov commited on
Commit
9649eed
·
verified ·
1 Parent(s): 8a3b670
Files changed (1) hide show
  1. README.md +15 -9
README.md CHANGED
@@ -81,7 +81,7 @@ from zipnn import zipnn_hf
81
  zipnn_hf()
82
 
83
 
84
- pipe = pipeline("automatic-speech-recognition", model="royleibov/wav2vec2-large-xlsr-53-english")
85
  ```
86
  ```python
87
  # Load model directly
@@ -90,22 +90,22 @@ from zipnn import zipnn_hf
90
 
91
  zipnn_hf()
92
 
93
- processor = AutoProcessor.from_pretrained("royleibov/wav2vec2-large-xlsr-53-english")
94
- model = AutoModelForCTC.from_pretrained("royleibov/wav2vec2-large-xlsr-53-english")
95
  ```
96
  ### ZipNN
97
  ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.
98
 
99
  To compress the cached model, simply run:
100
  ```bash
101
- python zipnn_compress_path.py safetensors --model royleibov/granite-3.0-8b-instruct-ZipNN-Compressed --hf_cache
102
  ```
103
 
104
  The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).
105
 
106
  To decompress manualy, simply run:
107
  ```bash
108
- python zipnn_decompress_path.py --model royleibov/granite-3.0-8b-instruct-ZipNN-Compressed --hf_cache
109
  ```
110
 
111
  # Fine-tuned XLSR-53 large model for speech recognition in English
@@ -125,8 +125,11 @@ Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library
125
 
126
  ```python
127
  from huggingsound import SpeechRecognitionModel
 
 
 
128
 
129
- model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english")
130
  audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
131
 
132
  transcriptions = model.transcribe(audio_paths)
@@ -139,9 +142,12 @@ import torch
139
  import librosa
140
  from datasets import load_dataset
141
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
 
 
 
142
 
143
  LANG_ID = "en"
144
- MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
145
  SAMPLES = 10
146
 
147
  test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
@@ -190,13 +196,13 @@ for i, predicted_sentence in enumerate(predicted_sentences):
190
  1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
191
 
192
  ```bash
193
- python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test
194
  ```
195
 
196
  2. To evaluate on `speech-recognition-community-v2/dev_data`
197
 
198
  ```bash
199
- python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0
200
  ```
201
 
202
  ## Citation
 
81
  zipnn_hf()
82
 
83
 
84
+ pipe = pipeline("automatic-speech-recognition", model="royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed")
85
  ```
86
  ```python
87
  # Load model directly
 
90
 
91
  zipnn_hf()
92
 
93
+ processor = AutoProcessor.from_pretrained("royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed")
94
+ model = AutoModelForCTC.from_pretrained("royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed")
95
  ```
96
  ### ZipNN
97
  ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.
98
 
99
  To compress the cached model, simply run:
100
  ```bash
101
+ python zipnn_compress_path.py safetensors --model royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed --hf_cache
102
  ```
103
 
104
  The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).
105
 
106
  To decompress manualy, simply run:
107
  ```bash
108
+ python zipnn_decompress_path.py --model royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed --hf_cache
109
  ```
110
 
111
  # Fine-tuned XLSR-53 large model for speech recognition in English
 
125
 
126
  ```python
127
  from huggingsound import SpeechRecognitionModel
128
+ from zipnn import zipnn_hf
129
+
130
+ zipnn_hf()
131
 
132
+ model = SpeechRecognitionModel("royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed")
133
  audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
134
 
135
  transcriptions = model.transcribe(audio_paths)
 
142
  import librosa
143
  from datasets import load_dataset
144
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
145
+ from zipnn import zipnn_hf
146
+
147
+ zipnn_hf()
148
 
149
  LANG_ID = "en"
150
+ MODEL_ID = "royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed"
151
  SAMPLES = 10
152
 
153
  test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
 
196
  1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
197
 
198
  ```bash
199
+ python eval.py --model_id royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed --dataset mozilla-foundation/common_voice_6_0 --config en --split test
200
  ```
201
 
202
  2. To evaluate on `speech-recognition-community-v2/dev_data`
203
 
204
  ```bash
205
+ python eval.py --model_id royleibov/wav2vec2-large-xlsr-53-english-ZipNN-Compressed --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0
206
  ```
207
 
208
  ## Citation