ronyw7/BERT_PatentAbstract2IncomeGroup_2500
This model is a fine-tuned version of bert-base-cased on a small subset (2500 samples) of the Google Patents Public Dataset. It uses patent abstracts to predict the income group of the country that has filed the patent. This is a proof-of-concept for a future text classification task.
It achieves the following results on the evaluation set:
- Train Loss: 0.3547
- Validation Loss: 0.4376
- Train Accuracy: 0.8307
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 224, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
0.7751 | 0.5325 | 0.7712 | 0 |
0.4271 | 0.4376 | 0.8307 | 1 |
0.3547 | 0.4376 | 0.8307 | 2 |
Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.0
- Tokenizers 0.13.3
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ronyw7/BERT_PatentAbstract2IncomeGroup_2500
Base model
google-bert/bert-base-cased