rohitsaxena's picture
End of training
dabb8dd verified
metadata
library_name: transformers
license: llama2
base_model: llava-hf/llava-1.5-7b-hf
tags:
  - trl
  - sft
  - generated_from_trainer
metrics:
  - bleu
  - rouge
model-index:
  - name: sft-llava-1.5-7b_lora
    results: []

sft-llava-1.5-7b_lora

This model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9404
  • Bleu: 0.1802
  • Rouge1: 0.4861
  • Rouge2: 0.1709
  • Rougel: 0.3580
  • Bertscore Precision: 0.6578
  • Bertscore Recall: 0.7479
  • Bertscore F1: 0.6999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge1 Rouge2 Rougel Bertscore Precision Bertscore Recall Bertscore F1
5.7514 0.3101 200 5.6831 0.0772 0.2028 0.0717 0.1778 0.6381 0.7437 0.6869
2.9737 0.6202 400 2.9242 0.1580 0.4319 0.1445 0.3306 0.6578 0.7479 0.6999
2.6756 0.9302 600 2.6594 0.1839 0.4859 0.1759 0.3680 0.6381 0.7437 0.6869
2.18 1.2403 800 2.5783 0.1754 0.4864 0.1754 0.3775 0.6578 0.7479 0.6999
2.0957 1.5504 1000 2.5019 0.1849 0.4877 0.1850 0.3801 0.6578 0.7479 0.6999
2.0109 1.8605 1200 2.4393 0.1879 0.4911 0.1840 0.3859 0.6578 0.7479 0.6999
0.7656 2.1705 1400 2.9613 0.1808 0.4810 0.1719 0.3644 0.6578 0.7479 0.6999
0.7271 2.4806 1600 3.0544 0.1817 0.4795 0.1695 0.3629 0.6578 0.7479 0.6999
0.6746 2.7907 1800 3.0377 0.1754 0.4765 0.1639 0.3508 0.6578 0.7479 0.6999
0.1183 3.1008 2000 3.6408 0.1801 0.4821 0.1710 0.3636 0.6578 0.7479 0.6999
0.1123 3.4109 2200 3.6913 0.1765 0.4903 0.1712 0.3629 0.6578 0.7479 0.6999
0.1051 3.7209 2400 3.7181 0.1766 0.4884 0.1701 0.3618 0.6578 0.7479 0.6999
0.046 4.0310 2600 3.7719 0.1781 0.4849 0.1711 0.3598 0.6578 0.7479 0.6999
0.0444 4.3411 2800 3.9170 0.1801 0.4852 0.1719 0.3595 0.6578 0.7479 0.6999
0.0452 4.6512 3000 3.9377 0.1808 0.4872 0.1714 0.3604 0.6578 0.7479 0.6999
0.0449 4.9612 3200 3.9404 0.1802 0.4861 0.1709 0.3580 0.6578 0.7479 0.6999

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 3.0.1
  • Tokenizers 0.20.1