Llama-3.2_sft
This model is a fine-tuned version of meta-llama/Llama-3.2-11B-Vision on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7029
- Bleu: 0.3190
- Rouge1: 0.6446
- Rouge2: 0.3444
- Rougel: 0.5512
- Bertscore Precision: 0.8782
- Bertscore Recall: 0.8935
- Bertscore F1: 0.8858
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | Bertscore Precision | Bertscore Recall | Bertscore F1 |
---|---|---|---|---|---|---|---|---|---|---|
1.7104 | 1.2403 | 100 | 1.7210 | 0.3168 | 0.6444 | 0.3460 | 0.5505 | 0.8774 | 0.8931 | 0.8852 |
1.677 | 2.4806 | 200 | 1.7063 | 0.3191 | 0.6462 | 0.3472 | 0.5524 | 0.8781 | 0.8935 | 0.8857 |
1.6343 | 3.7209 | 300 | 1.7020 | 0.3188 | 0.6448 | 0.3445 | 0.5513 | 0.8782 | 0.8934 | 0.8857 |
1.6163 | 4.9612 | 400 | 1.7029 | 0.3190 | 0.6446 | 0.3444 | 0.5512 | 0.8782 | 0.8935 | 0.8858 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.2.0a0+81ea7a4
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 22
Model tree for rohitsaxena/Llama-3.2_sft
Base model
meta-llama/Llama-3.2-11B-Vision