rohanmj99's picture
Update README.md
8ff5718 verified
metadata
base_model: motheecreator/vit-Facial-Expression-Recognition
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-Facial-Expression-Recognition
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: None
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9148438153091649
license: apache-2.0
language:
  - en
pipeline_tag: image-classification
library_name: transformers

vit-Facial-Expression-Recognition

This model is a fine-tuned version of motheecreator/vit-Facial-Expression-Recognition on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2606
  • Accuracy: 0.9148

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6309 0.3328 100 0.2618 0.9145
0.6165 0.6656 200 0.2600 0.9150
0.6283 0.9983 300 0.2659 0.9135
0.6171 1.3311 400 0.2561 0.9174
0.6112 1.6639 500 0.2606 0.9148
0.6081 1.9967 600 0.2624 0.9137
0.5885 2.3295 700 0.2671 0.9113
0.5975 2.6622 800 0.2572 0.9156
0.6067 2.9950 900 0.2683 0.9116

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1