roequitz's picture
End of training
206a52c verified
metadata
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
  - generated_from_trainer
model-index:
  - name: bart-abs-2409-0144-lr-3e-05-bs-4-maxep-10
    results: []

bart-abs-2409-0144-lr-3e-05-bs-4-maxep-10

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7398
  • Rouge/rouge1: 0.4519
  • Rouge/rouge2: 0.1957
  • Rouge/rougel: 0.3795
  • Rouge/rougelsum: 0.3809
  • Bertscore/bertscore-precision: 0.8939
  • Bertscore/bertscore-recall: 0.8913
  • Bertscore/bertscore-f1: 0.8925
  • Meteor: 0.4012
  • Gen Len: 37.1455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.7649 1.0 217 2.3871 0.4493 0.2047 0.3867 0.3879 0.8969 0.89 0.8933 0.3916 35.6364
0.5599 2.0 434 2.5775 0.4553 0.2005 0.3849 0.3861 0.8951 0.8914 0.8931 0.3951 36.1636
0.4078 3.0 651 2.9176 0.4622 0.2118 0.3904 0.3927 0.8942 0.8925 0.8932 0.4137 36.9818
0.2969 4.0 868 3.1512 0.4589 0.2038 0.3877 0.3892 0.8957 0.8886 0.892 0.3961 34.6364
0.2291 5.0 1085 3.3475 0.4594 0.2035 0.3899 0.3915 0.8964 0.8925 0.8943 0.4099 36.9364
0.2006 6.0 1302 3.3661 0.466 0.209 0.3934 0.3959 0.896 0.8933 0.8945 0.4136 37.2818
0.1485 7.0 1519 3.5165 0.4639 0.2054 0.3846 0.3862 0.8939 0.8931 0.8934 0.4137 38.7636
0.1131 8.0 1736 3.6478 0.4595 0.202 0.3882 0.3908 0.8958 0.8903 0.8929 0.402 35.2727
0.0945 9.0 1953 3.7024 0.4614 0.2048 0.39 0.391 0.8933 0.894 0.8935 0.4163 40.1545
0.0794 10.0 2170 3.7398 0.4519 0.1957 0.3795 0.3809 0.8939 0.8913 0.8925 0.4012 37.1455

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1