roequitz's picture
End of training
e120b9e verified
metadata
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
  - generated_from_trainer
model-index:
  - name: bart-abs-1509-0313-lr-3e-05-bs-8-maxep-10
    results: []

bart-abs-1509-0313-lr-3e-05-bs-8-maxep-10

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7689
  • Rouge/rouge1: 0.4647
  • Rouge/rouge2: 0.2065
  • Rouge/rougel: 0.3953
  • Rouge/rougelsum: 0.3967
  • Bertscore/bertscore-precision: 0.8961
  • Bertscore/bertscore-recall: 0.8941
  • Bertscore/bertscore-f1: 0.895
  • Meteor: 0.4195
  • Gen Len: 37.9545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.332 1.0 109 2.9323 0.4383 0.1841 0.3691 0.3701 0.8915 0.8887 0.8899 0.3951 37.2182
0.3384 2.0 218 3.0419 0.4611 0.2038 0.3901 0.3918 0.8941 0.8913 0.8925 0.4163 37.1909
0.2354 3.0 327 3.2793 0.445 0.1903 0.3776 0.3785 0.8938 0.8895 0.8915 0.394 36.4545
0.1736 4.0 436 3.4093 0.4545 0.2 0.3877 0.3885 0.8939 0.8921 0.8928 0.4094 38.3818
0.1406 5.0 545 3.5183 0.4634 0.2065 0.394 0.3945 0.898 0.8925 0.8951 0.4032 35.5182
0.1108 6.0 654 3.6131 0.4667 0.2075 0.3961 0.3964 0.8966 0.8936 0.8949 0.4155 37.4364
0.0906 7.0 763 3.6935 0.4602 0.2002 0.3892 0.3903 0.8922 0.8944 0.8931 0.4116 39.6
0.0788 8.0 872 3.7280 0.4704 0.212 0.4 0.4018 0.8941 0.8955 0.8946 0.431 39.8727
0.0708 9.0 981 3.7601 0.468 0.2062 0.3979 0.3994 0.8953 0.8948 0.8949 0.4244 38.9727
0.0637 10.0 1090 3.7689 0.4647 0.2065 0.3953 0.3967 0.8961 0.8941 0.895 0.4195 37.9545

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1