mistralai_compi_data
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4322
- Accuracy: 0.8761
- Precision: 0.8564
- Recall: 0.8995
- F1 score: 0.8774
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score |
---|---|---|---|---|---|---|---|
1.3663 | 0.2604 | 200 | 1.1150 | 0.7692 | 0.8851 | 0.6111 | 0.7230 |
0.8905 | 0.5208 | 400 | 0.6190 | 0.8318 | 0.8487 | 0.8016 | 0.8245 |
0.7007 | 0.7812 | 600 | 0.5719 | 0.8462 | 0.9140 | 0.7593 | 0.8295 |
0.5215 | 1.0417 | 800 | 0.4315 | 0.8696 | 0.8819 | 0.8492 | 0.8652 |
0.2955 | 1.3021 | 1000 | 0.6376 | 0.8592 | 0.8140 | 0.9259 | 0.8663 |
0.3254 | 1.5625 | 1200 | 0.5735 | 0.8735 | 0.9607 | 0.7751 | 0.8580 |
0.3075 | 1.8229 | 1400 | 0.4322 | 0.8761 | 0.8564 | 0.8995 | 0.8774 |
Framework versions
- PEFT 0.11.1
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for rishavranaut/mistralai_compi_data
Base model
mistralai/Mistral-7B-v0.1