llama3-8B_Fact_U / README.md
rishavranaut's picture
rishavranaut/llama3-8B_Fact_U
5dd9801 verified
|
raw
history blame
3.29 kB
metadata
license: llama3
library_name: peft
tags:
  - generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: llama3-8B_Fact_U
    results: []

llama3-8B_Fact_U

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1146
  • Accuracy: 0.7953
  • Precision: 0.8252
  • Recall: 0.7692
  • F1 score: 0.7963

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 score
0.9272 0.2509 200 1.1877 0.5765 0.5589 0.8801 0.6837
0.7133 0.5019 400 0.7246 0.7 0.6912 0.7647 0.7261
0.6476 0.7528 600 0.6219 0.7565 0.7945 0.7172 0.7539
0.5766 1.0038 800 0.5714 0.76 0.85 0.6538 0.7391
0.4292 1.2547 1000 0.5870 0.7588 0.7474 0.8100 0.7774
0.4047 1.5056 1200 0.6078 0.7824 0.7694 0.8303 0.7987
0.4753 1.7566 1400 0.5654 0.7929 0.8575 0.7217 0.7838
0.3831 2.0075 1600 0.5672 0.8012 0.8289 0.7783 0.8028
0.2666 2.2585 1800 0.6054 0.8047 0.8416 0.7692 0.8038
0.3267 2.5094 2000 0.6620 0.7929 0.8182 0.7738 0.7953
0.2742 2.7604 2200 0.6985 0.7941 0.8579 0.7240 0.7853
0.3125 3.0113 2400 0.6373 0.7859 0.7955 0.7919 0.7937
0.1743 3.2622 2600 0.8362 0.8047 0.8730 0.7308 0.7956
0.1837 3.5132 2800 0.7889 0.7965 0.8440 0.7466 0.7923
0.2013 3.7641 3000 0.8958 0.7659 0.7425 0.8416 0.7890
0.1572 4.0151 3200 0.8662 0.8012 0.864 0.7330 0.7931
0.0993 4.2660 3400 0.8730 0.8024 0.8477 0.7557 0.7990
0.0704 4.5169 3600 1.0571 0.8012 0.8421 0.7602 0.7990
0.0598 4.7679 3800 1.1146 0.7953 0.8252 0.7692 0.7963

Framework versions

  • PEFT 0.11.1
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1