flanT5_large_Fact_U
This model is a fine-tuned version of google/flan-t5-large on the None dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.7812
- F1 score: 0.7842
- Precision: 0.8048
- Recall: 0.7647
- Loss: 1.5959
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Accuracy | F1 score | Precision | Recall | Validation Loss |
---|---|---|---|---|---|---|---|
1.2434 | 0.0314 | 200 | 0.6059 | 0.6974 | 0.5805 | 0.8733 | 0.7545 |
1.4323 | 0.0628 | 400 | 0.6 | 0.6970 | 0.575 | 0.8846 | 1.7199 |
1.253 | 0.0941 | 600 | 0.6059 | 0.6957 | 0.5812 | 0.8665 | 1.3828 |
1.2986 | 0.1255 | 800 | 0.48 | 0.0 | 0.0 | 0.0 | 2.4072 |
1.2843 | 0.1569 | 1000 | 0.6553 | 0.5925 | 0.7690 | 0.4819 | 1.2474 |
1.2245 | 0.1883 | 1200 | 0.5435 | 0.2271 | 0.95 | 0.1290 | 1.3841 |
1.2389 | 0.2197 | 1400 | 0.6706 | 0.6923 | 0.6731 | 0.7127 | 0.8993 |
1.132 | 0.2511 | 1600 | 0.6271 | 0.6846 | 0.6110 | 0.7783 | 0.6845 |
1.0836 | 0.2824 | 1800 | 0.6824 | 0.6574 | 0.7486 | 0.5860 | 1.1694 |
1.2434 | 0.3138 | 2000 | 0.6788 | 0.6422 | 0.7632 | 0.5543 | 1.4787 |
1.1196 | 0.3452 | 2200 | 0.6694 | 0.6659 | 0.7018 | 0.6335 | 1.5004 |
1.5791 | 0.3766 | 2400 | 0.6376 | 0.5157 | 0.8454 | 0.3710 | 1.1289 |
1.3035 | 0.4080 | 2600 | 0.6859 | 0.6877 | 0.7119 | 0.6652 | 1.0136 |
1.1401 | 0.4394 | 2800 | 0.6753 | 0.6443 | 0.7485 | 0.5656 | 1.2340 |
0.9518 | 0.4707 | 3000 | 0.7024 | 0.6810 | 0.7692 | 0.6109 | 1.2197 |
1.1623 | 0.5021 | 3200 | 0.6788 | 0.6807 | 0.7046 | 0.6584 | 1.2827 |
1.1316 | 0.5335 | 3400 | 0.6659 | 0.7183 | 0.6396 | 0.8190 | 1.5077 |
1.2599 | 0.5649 | 3600 | 0.6341 | 0.5071 | 0.8466 | 0.3620 | 0.8272 |
0.9866 | 0.5963 | 3800 | 0.6647 | 0.6939 | 0.6605 | 0.7308 | 1.4574 |
1.147 | 0.6276 | 4000 | 0.6824 | 0.64 | 0.7792 | 0.5430 | 1.2933 |
1.0307 | 0.6590 | 4200 | 0.6482 | 0.5795 | 0.7658 | 0.4661 | 1.1586 |
1.0616 | 0.6904 | 4400 | 0.6976 | 0.6877 | 0.7428 | 0.6403 | 1.2668 |
1.0724 | 0.7218 | 4600 | 0.6447 | 0.6225 | 0.6955 | 0.5633 | 1.1130 |
0.9499 | 0.7532 | 4800 | 0.7188 | 0.7046 | 0.7766 | 0.6448 | 1.1635 |
1.1302 | 0.7846 | 5000 | 0.7118 | 0.7357 | 0.7031 | 0.7715 | 1.2608 |
1.1921 | 0.8159 | 5200 | 0.7094 | 0.6754 | 0.8056 | 0.5814 | 1.1742 |
0.9532 | 0.8473 | 5400 | 0.7071 | 0.6860 | 0.7749 | 0.6154 | 1.1589 |
0.783 | 0.8787 | 5600 | 0.7 | 0.6577 | 0.8086 | 0.5543 | 1.3256 |
0.9835 | 0.9101 | 5800 | 0.7282 | 0.7166 | 0.7828 | 0.6606 | 1.1383 |
0.9898 | 0.9415 | 6000 | 0.7141 | 0.7158 | 0.7409 | 0.6923 | 1.0662 |
0.9768 | 0.9729 | 6200 | 0.7059 | 0.6711 | 0.8019 | 0.5769 | 1.1941 |
1.043 | 1.0042 | 6400 | 0.6729 | 0.5838 | 0.8628 | 0.4412 | 1.2302 |
0.9531 | 1.0356 | 6600 | 0.7106 | 0.7 | 0.7593 | 0.6493 | 1.1304 |
1.0585 | 1.0670 | 6800 | 0.7294 | 0.7132 | 0.7944 | 0.6471 | 1.0234 |
0.8862 | 1.0984 | 7000 | 0.6953 | 0.6230 | 0.8735 | 0.4842 | 1.1941 |
0.8721 | 1.1298 | 7200 | 0.7376 | 0.7271 | 0.792 | 0.6719 | 0.9352 |
0.8678 | 1.1611 | 7400 | 0.7388 | 0.7533 | 0.7402 | 0.7670 | 1.0473 |
0.7617 | 1.1925 | 7600 | 0.7294 | 0.7522 | 0.7181 | 0.7896 | 1.3020 |
1.0394 | 1.2239 | 7800 | 0.7212 | 0.7019 | 0.7904 | 0.6312 | 1.0322 |
0.822 | 1.2553 | 8000 | 0.7388 | 0.7266 | 0.7973 | 0.6674 | 1.0980 |
0.8406 | 1.2867 | 8200 | 0.7118 | 0.7357 | 0.7031 | 0.7715 | 1.4589 |
0.7059 | 1.3181 | 8400 | 0.7306 | 0.6999 | 0.8318 | 0.6041 | 1.0655 |
0.8649 | 1.3494 | 8600 | 0.7424 | 0.7266 | 0.8106 | 0.6584 | 0.9708 |
0.7142 | 1.3808 | 8800 | 0.7553 | 0.7419 | 0.8214 | 0.6765 | 1.1603 |
0.9057 | 1.4122 | 9000 | 0.76 | 0.7431 | 0.8381 | 0.6674 | 0.9389 |
0.9312 | 1.4436 | 9200 | 0.7553 | 0.7615 | 0.7721 | 0.7511 | 1.0568 |
0.8459 | 1.4750 | 9400 | 0.7459 | 0.7372 | 0.7974 | 0.6855 | 1.1646 |
0.8427 | 1.5064 | 9600 | 0.7459 | 0.7293 | 0.8174 | 0.6584 | 1.0133 |
0.7245 | 1.5377 | 9800 | 0.7341 | 0.6861 | 0.8885 | 0.5588 | 1.1397 |
0.6386 | 1.5691 | 10000 | 0.7294 | 0.6742 | 0.9015 | 0.5385 | 1.1112 |
0.7513 | 1.6005 | 10200 | 0.7671 | 0.7648 | 0.805 | 0.7285 | 0.9403 |
0.828 | 1.6319 | 10400 | 0.76 | 0.7639 | 0.7820 | 0.7466 | 0.9412 |
0.8393 | 1.6633 | 10600 | 0.7553 | 0.7219 | 0.8824 | 0.6109 | 0.9359 |
0.8679 | 1.6946 | 10800 | 0.7588 | 0.7402 | 0.8415 | 0.6606 | 0.8979 |
0.6735 | 1.7260 | 11000 | 0.7588 | 0.7285 | 0.8786 | 0.6222 | 1.0666 |
0.8702 | 1.7574 | 11200 | 0.7576 | 0.7553 | 0.795 | 0.7195 | 0.9554 |
0.7435 | 1.7888 | 11400 | 0.7588 | 0.7497 | 0.8143 | 0.6946 | 1.0937 |
0.8796 | 1.8202 | 11600 | 0.7824 | 0.7768 | 0.8320 | 0.7285 | 0.9257 |
0.6257 | 1.8516 | 11800 | 0.7659 | 0.7588 | 0.8172 | 0.7081 | 0.9606 |
0.8589 | 1.8829 | 12000 | 0.7659 | 0.7484 | 0.8481 | 0.6697 | 0.9013 |
0.865 | 1.9143 | 12200 | 0.7612 | 0.7717 | 0.7673 | 0.7760 | 1.0734 |
0.8068 | 1.9457 | 12400 | 0.76 | 0.7431 | 0.8381 | 0.6674 | 0.9214 |
0.6212 | 1.9771 | 12600 | 0.7706 | 0.7535 | 0.8539 | 0.6742 | 1.0116 |
0.7657 | 2.0085 | 12800 | 0.7718 | 0.7532 | 0.8605 | 0.6697 | 0.9830 |
0.6631 | 2.0399 | 13000 | 0.7776 | 0.7810 | 0.8005 | 0.7624 | 1.0075 |
0.3003 | 2.0712 | 13200 | 0.7812 | 0.7748 | 0.8333 | 0.7240 | 1.1456 |
0.5982 | 2.1026 | 13400 | 0.7753 | 0.7633 | 0.8438 | 0.6968 | 1.0728 |
0.4828 | 2.1340 | 13600 | 0.7753 | 0.7718 | 0.8177 | 0.7308 | 1.0474 |
0.5463 | 2.1654 | 13800 | 0.7776 | 0.7726 | 0.8252 | 0.7262 | 1.0521 |
0.5429 | 2.1968 | 14000 | 0.7706 | 0.7590 | 0.8365 | 0.6946 | 1.0990 |
0.7112 | 2.2282 | 14200 | 0.7729 | 0.7578 | 0.8507 | 0.6833 | 1.1072 |
0.4816 | 2.2595 | 14400 | 0.7753 | 0.7685 | 0.8277 | 0.7172 | 1.1528 |
0.7882 | 2.2909 | 14600 | 0.7765 | 0.7722 | 0.8214 | 0.7285 | 0.9670 |
0.5265 | 2.3223 | 14800 | 0.7765 | 0.7694 | 0.8298 | 0.7172 | 1.0724 |
0.6116 | 2.3537 | 15000 | 0.7776 | 0.7742 | 0.8203 | 0.7330 | 1.0316 |
0.575 | 2.3851 | 15200 | 0.7741 | 0.7624 | 0.8415 | 0.6968 | 1.1125 |
0.5599 | 2.4164 | 15400 | 0.7765 | 0.7754 | 0.8119 | 0.7421 | 1.0327 |
0.5821 | 2.4478 | 15600 | 0.7776 | 0.7784 | 0.8078 | 0.7511 | 1.0655 |
0.4777 | 2.4792 | 15800 | 0.7835 | 0.7880 | 0.8028 | 0.7738 | 1.1187 |
0.432 | 2.5106 | 16000 | 0.7788 | 0.7740 | 0.8256 | 0.7285 | 1.1973 |
0.4385 | 2.5420 | 16200 | 0.7729 | 0.7737 | 0.8029 | 0.7466 | 1.2155 |
0.6103 | 2.5734 | 16400 | 0.78 | 0.7771 | 0.8212 | 0.7376 | 1.0527 |
0.4618 | 2.6047 | 16600 | 0.78 | 0.7787 | 0.8164 | 0.7443 | 1.1377 |
0.471 | 2.6361 | 16800 | 0.7788 | 0.7814 | 0.8038 | 0.7602 | 1.1468 |
0.6206 | 2.6675 | 17000 | 0.7765 | 0.7791 | 0.8014 | 0.7579 | 1.1048 |
0.5869 | 2.6989 | 17200 | 0.7776 | 0.7850 | 0.7895 | 0.7805 | 1.1343 |
0.5647 | 2.7303 | 17400 | 0.7859 | 0.7849 | 0.8218 | 0.7511 | 1.0843 |
0.5527 | 2.7617 | 17600 | 0.7847 | 0.7875 | 0.8091 | 0.7670 | 1.0834 |
0.8013 | 2.7930 | 17800 | 0.7894 | 0.7926 | 0.8124 | 0.7738 | 0.9898 |
0.5232 | 2.8244 | 18000 | 0.7859 | 0.7884 | 0.8110 | 0.7670 | 1.0052 |
0.617 | 2.8558 | 18200 | 0.7824 | 0.7821 | 0.8157 | 0.7511 | 1.0083 |
0.5093 | 2.8872 | 18400 | 0.7835 | 0.7810 | 0.8241 | 0.7421 | 1.0510 |
0.5099 | 2.9186 | 18600 | 0.78 | 0.7797 | 0.8133 | 0.7489 | 1.0758 |
0.6239 | 2.9499 | 18800 | 0.7812 | 0.7801 | 0.8168 | 0.7466 | 1.0726 |
0.6592 | 2.9813 | 19000 | 0.7788 | 0.7773 | 0.8159 | 0.7421 | 1.0731 |
0.1354 | 3.0127 | 19200 | 0.7765 | 0.7791 | 0.8014 | 0.7579 | 1.3351 |
0.3893 | 3.0755 | 19600 | 0.7835 | 0.7933 | 0.7879 | 0.7986 | 1.1745 |
0.4753 | 3.1382 | 20000 | 0.7882 | 0.7783 | 0.8541 | 0.7149 | 1.2362 |
0.3696 | 3.2010 | 20400 | 0.7847 | 0.7850 | 0.8166 | 0.7557 | 1.2638 |
0.4476 | 3.2638 | 20800 | 0.7706 | 0.7522 | 0.8580 | 0.6697 | 1.3415 |
0.4819 | 3.3265 | 21200 | 0.7776 | 0.7731 | 0.8235 | 0.7285 | 1.2743 |
0.4361 | 3.3893 | 21600 | 0.7765 | 0.7727 | 0.8198 | 0.7308 | 1.1387 |
0.3522 | 3.4521 | 22000 | 0.7694 | 0.7773 | 0.7808 | 0.7738 | 1.4823 |
0.4655 | 3.5148 | 22400 | 0.7529 | 0.7789 | 0.7283 | 0.8371 | 1.4060 |
0.438 | 3.5776 | 22800 | 0.7659 | 0.7651 | 0.8 | 0.7330 | 1.2310 |
0.5766 | 3.6404 | 23200 | 0.7776 | 0.7869 | 0.7843 | 0.7896 | 1.2406 |
0.5009 | 3.7031 | 23600 | 0.7882 | 0.7950 | 0.8005 | 0.7896 | 1.1521 |
0.4282 | 3.7659 | 24000 | 0.7765 | 0.7860 | 0.7825 | 0.7896 | 1.2111 |
0.3733 | 3.8287 | 24400 | 0.7765 | 0.7780 | 0.8043 | 0.7534 | 1.3162 |
0.5248 | 3.8914 | 24800 | 0.7788 | 0.7814 | 0.8038 | 0.7602 | 1.2680 |
0.4236 | 3.9542 | 25200 | 0.7706 | 0.7802 | 0.7775 | 0.7828 | 1.3282 |
0.5013 | 4.0169 | 25600 | 0.7753 | 0.7792 | 0.7967 | 0.7624 | 1.2586 |
0.2414 | 4.0797 | 26000 | 0.7741 | 0.7773 | 0.7976 | 0.7579 | 1.2782 |
0.1564 | 4.1425 | 26400 | 0.78 | 0.7797 | 0.8133 | 0.7489 | 1.4687 |
0.2116 | 4.2052 | 26800 | 0.7694 | 0.7768 | 0.7821 | 0.7715 | 1.3950 |
0.288 | 4.2680 | 27200 | 0.7753 | 0.7766 | 0.8039 | 0.7511 | 1.3878 |
0.1134 | 4.3308 | 27600 | 0.7729 | 0.7721 | 0.8074 | 0.7398 | 1.6678 |
0.1839 | 4.3935 | 28000 | 0.7729 | 0.7705 | 0.8120 | 0.7330 | 1.6949 |
0.1831 | 4.4563 | 28400 | 0.78 | 0.7808 | 0.8102 | 0.7534 | 1.5547 |
0.2417 | 4.5191 | 28800 | 0.7847 | 0.7824 | 0.8246 | 0.7443 | 1.4637 |
0.1922 | 4.5818 | 29200 | 0.7824 | 0.7821 | 0.8157 | 0.7511 | 1.5513 |
0.252 | 4.6446 | 29600 | 0.78 | 0.7808 | 0.8102 | 0.7534 | 1.5873 |
0.2172 | 4.7074 | 30000 | 0.7882 | 0.7867 | 0.8259 | 0.7511 | 1.5172 |
0.1177 | 4.7701 | 30400 | 0.7824 | 0.7866 | 0.8024 | 0.7715 | 1.5945 |
0.1921 | 4.8329 | 30800 | 0.7812 | 0.7842 | 0.8048 | 0.7647 | 1.6031 |
0.1833 | 4.8957 | 31200 | 0.7765 | 0.7831 | 0.7903 | 0.7760 | 1.5854 |
0.243 | 4.9584 | 31600 | 0.7812 | 0.7842 | 0.8048 | 0.7647 | 1.5959 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rishavranaut/flanT5_large_Fact_U
Base model
google/flan-t5-large