llama2-7B_final_MT

This model is a fine-tuned version of Qwen/Qwen2-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5523
  • Accuracy: 0.8117
  • Precision: 0.7913
  • Recall: 0.8467
  • F1 score: 0.8180

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 score
0.8396 0.5 200 0.8733 0.645 0.6064 0.8267 0.6996
0.6541 1.0 400 0.6882 0.695 0.7127 0.6533 0.6817
0.4601 1.5 600 0.6691 0.7067 0.6505 0.8933 0.7528
0.4437 2.0 800 0.5010 0.7833 0.7690 0.81 0.7890
0.3406 2.5 1000 0.5010 0.7767 0.7823 0.7667 0.7744
0.2919 3.0 1200 0.4927 0.8117 0.8127 0.81 0.8114
0.2219 3.5 1400 0.4971 0.8217 0.8044 0.85 0.8266
0.2154 4.0 1600 0.6404 0.7633 0.7147 0.8767 0.7874
0.1381 4.5 1800 0.5391 0.815 0.8 0.84 0.8195
0.1531 5.0 2000 0.5523 0.8117 0.7913 0.8467 0.8180

Framework versions

  • PEFT 0.11.1
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for rishavranaut/Qwen2_Final_MT

Base model

Qwen/Qwen2-7B
Adapter
(231)
this model