QWEN_without_time
This model is a fine-tuned version of Qwen/Qwen2-7B on the None dataset. It achieves the following results on the evaluation set:
Loss: 0.3017
Balanced Accuracy: 0.8957
Accuracy: 0.8957
Micro F1: 0.8957
Macro F1: 0.8957
Weighted F1: 0.8957
Classification Report: precision recall f1-score support
0 0.90 0.89 0.90 386 1 0.89 0.90 0.90 381
accuracy 0.90 767 macro avg 0.90 0.90 0.90 767
weighted avg 0.90 0.90 0.90 767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | Micro F1 | Macro F1 | Weighted F1 | Classification Report |
---|---|---|---|---|---|---|---|---|---|
0.5773 | 1.0 | 384 | 0.3372 | 0.8736 | 0.8735 | 0.8735 | 0.8735 | 0.8735 | precision recall f1-score support |
0 0.88 0.87 0.87 386
1 0.87 0.88 0.87 381
accuracy 0.87 767
macro avg 0.87 0.87 0.87 767 weighted avg 0.87 0.87 0.87 767 | | 0.3341 | 2.0 | 768 | 0.4140 | 0.8624 | 0.8631 | 0.8631 | 0.8612 | 0.8613 | precision recall f1-score support
0 0.80 0.97 0.88 386
1 0.97 0.75 0.84 381
accuracy 0.86 767
macro avg 0.88 0.86 0.86 767 weighted avg 0.88 0.86 0.86 767 | | 0.2934 | 3.0 | 1152 | 0.3017 | 0.8957 | 0.8957 | 0.8957 | 0.8957 | 0.8957 | precision recall f1-score support
0 0.90 0.89 0.90 386
1 0.89 0.90 0.90 381
accuracy 0.90 767
macro avg 0.90 0.90 0.90 767 weighted avg 0.90 0.90 0.90 767 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for rishavranaut/QWEN_without_time
Base model
Qwen/Qwen2-7B