QWEN_2_7B_final_task2_2.0
This model is a fine-tuned version of Qwen/Qwen2-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3677
- Accuracy: 0.91
- Precision: 0.9390
- Recall: 0.8775
- F1 score: 0.9072
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score |
---|---|---|---|---|---|---|---|
0.5932 | 0.5450 | 200 | 0.3686 | 0.8486 | 0.8551 | 0.8405 | 0.8477 |
0.3866 | 1.0899 | 400 | 0.3932 | 0.8671 | 0.93 | 0.7949 | 0.8571 |
0.306 | 1.6349 | 600 | 0.3703 | 0.8714 | 0.9196 | 0.8148 | 0.8640 |
0.2578 | 2.1798 | 800 | 0.3132 | 0.8729 | 0.8541 | 0.9003 | 0.8766 |
0.2226 | 2.7248 | 1000 | 0.3252 | 0.8986 | 0.9142 | 0.8803 | 0.8970 |
0.154 | 3.2698 | 1200 | 0.3590 | 0.9043 | 0.9329 | 0.8718 | 0.9013 |
0.1678 | 3.8147 | 1400 | 0.4233 | 0.8943 | 0.9571 | 0.8262 | 0.8869 |
0.1221 | 4.3597 | 1600 | 0.3445 | 0.8957 | 0.9017 | 0.8889 | 0.8953 |
0.086 | 4.9046 | 1800 | 0.3677 | 0.91 | 0.9390 | 0.8775 | 0.9072 |
Framework versions
- PEFT 0.11.1
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 29
Model tree for rishavranaut/QWEN_2_7B_final_task2_2.0
Base model
Qwen/Qwen2-7B