QWEN_2_7B_MT / README.md
rishavranaut's picture
rishavranaut/QWEN_2_7B_MT
586792b verified
|
raw
history blame
3.32 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: Qwen/Qwen2-7B
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: QWEN_2_7B_MT
    results: []

QWEN_2_7B_MT

This model is a fine-tuned version of Qwen/Qwen2-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7702
  • Accuracy: 0.78
  • Precision: 0.7979
  • Recall: 0.75
  • F1 score: 0.7732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 score
0.93 0.25 200 0.8818 0.6517 0.7264 0.4867 0.5828
0.6783 0.5 400 1.1545 0.59 0.7411 0.2767 0.4029
0.6849 0.75 600 0.7826 0.685 0.7424 0.5667 0.6427
0.6378 1.0 800 0.7399 0.695 0.7647 0.5633 0.6488
0.4773 1.25 1000 0.9978 0.66 0.8077 0.42 0.5526
0.4842 1.5 1200 0.6576 0.7333 0.6902 0.8467 0.7605
0.456 1.75 1400 0.6290 0.77 0.8068 0.71 0.7553
0.464 2.0 1600 0.6295 0.7617 0.7774 0.7333 0.7547
0.3689 2.25 1800 0.6090 0.7783 0.8224 0.71 0.7621
0.307 2.5 2000 0.6058 0.7733 0.7808 0.76 0.7703
0.3302 2.75 2200 0.6024 0.7867 0.7810 0.7967 0.7888
0.3156 3.0 2400 0.7082 0.765 0.8272 0.67 0.7403
0.2571 3.25 2600 0.9494 0.7017 0.8168 0.52 0.6354
0.2593 3.5 2800 0.6498 0.7717 0.8030 0.72 0.7592
0.2458 3.75 3000 0.6434 0.7867 0.7810 0.7967 0.7888
0.2135 4.0 3200 0.7042 0.775 0.7978 0.7367 0.7660
0.1582 4.25 3400 0.6730 0.78 0.7530 0.8333 0.7911
0.158 4.5 3600 0.7538 0.7783 0.8104 0.7267 0.7663
0.2043 4.75 3800 0.7398 0.785 0.8065 0.75 0.7772
0.163 5.0 4000 0.7702 0.78 0.7979 0.75 0.7732

Framework versions

  • PEFT 0.11.1
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1