|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" CCT model configuration""" |
|
|
|
from transformers import PretrainedConfig |
|
|
|
CCT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"rishabbala/cct_14_7x2_384": "https://huggingface.co./rishabbala/cct_14_7x2_384/blob/main/config.json", |
|
} |
|
|
|
|
|
class CctConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`CctModel`]. It is used to instantiate a CCT model |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the CCT |
|
[rishabbala/cct](https://huggingface.co./rishabbala/cct) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
img_size (`int`, *optional*, defaults to 384): |
|
The size of the input image |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`List[int]`, *optional*, defaults to [64, 384]): |
|
The number of output channels of each conv layer. |
|
conv_kernel_size (`int`, *optional*, defaults to 7): |
|
The kernel size of convolutional layers in patch embedding. |
|
conv_stride (`int`, *optional*, defaults to 2): |
|
The stride size of convolutional layers in patch embedding. |
|
conv_padding (`int`, *optional*, defaults to 3): |
|
The padding size of convolutional layers in patch embedding. |
|
conv_bias (`bool`, *optional*, defaults to False): |
|
Whether the convolutional layers have bias |
|
pool_kernel_size (`int`, *optional*, defaults to 7): |
|
The kernel size of max pool layers in patch embedding. |
|
pool_stride (`int`, *optional*, defaults to 2): |
|
The stride size of max pool layers in patch embedding. |
|
pool_padding (`int`, *optional*, defaults to 3): |
|
The padding size of max pool layers in patch embedding. |
|
num_conv_layers (`int`, *optional*, defaults to 2): |
|
Number of convolutional embedding layers |
|
embed_dim (`int`, *optional*, defaults to 384): |
|
Dimension of each of the encoder blocks. |
|
num_heads (`int`, *optional*, defaults to 6): |
|
Number of attention heads for each attention layer in each block of the Transformer encoder. |
|
mlp_ratio (`float`, *optional*, defaults to 3.0): |
|
Ratio of the size of the hidden layer compared to the size of the input layer of the FFNs in the encoder |
|
blocks. |
|
attention_drop_rate (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
drop_rate (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio following linear projections. |
|
drop_path_rate (`float`, *optional*, defaults to `0.0`): |
|
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. |
|
num_transformer_layers(`int`, *optional*, defaults to 14): |
|
Number of transformer self-attention layers |
|
pos_emb_type (`str`, *optional*, defaults to 'learnable'): |
|
Type of positional embedding used. Alternative: 'sinusoidal' |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import CctConfig, CctModel |
|
|
|
>>> # Initializing a Cct msft/cct style configuration |
|
>>> configuration = CctConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the msft/cct style configuration |
|
>>> model = CctModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "cct" |
|
|
|
def __init__( |
|
self, |
|
img_size=384, |
|
in_channels=3, |
|
out_channels=[64, 384], |
|
conv_kernel_size=7, |
|
conv_stride=2, |
|
conv_padding=3, |
|
conv_bias=False, |
|
pool_kernel_size=3, |
|
pool_stride=2, |
|
pool_padding=1, |
|
num_conv_layers=2, |
|
embed_dim=384, |
|
num_heads=6, |
|
mlp_ratio=3, |
|
attention_drop_rate=0.1, |
|
drop_rate=0.0, |
|
drop_path_rate=0.0, |
|
num_transformer_layers=14, |
|
pos_emb_type="learnable", |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.img_size = img_size |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.num_channels = out_channels[-1] |
|
self.conv_kernel_size = conv_kernel_size |
|
self.conv_stride = conv_stride |
|
self.conv_padding = conv_padding |
|
self.conv_bias = conv_bias |
|
self.pool_kernel_size = pool_kernel_size |
|
self.pool_stride = pool_stride |
|
self.pool_padding = pool_padding |
|
self.num_conv_layers = num_conv_layers |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.mlp_ratio = mlp_ratio |
|
self.attention_drop_rate = attention_drop_rate |
|
self.drop_rate = drop_rate |
|
self.drop_path_rate = drop_path_rate |
|
self.num_transformer_layers = num_transformer_layers |
|
self.pos_emb_type = pos_emb_type |
|
|