File size: 5,782 Bytes
c54f92e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CCT model configuration"""

from transformers import PretrainedConfig

CCT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "rishabbala/cct_14_7x2_384": "https://huggingface.co./rishabbala/cct_14_7x2_384/blob/main/config.json",
}


class CctConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`CctModel`]. It is used to instantiate a CCT model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the CCT
    [rishabbala/cct](https://huggingface.co./rishabbala/cct) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        img_size (`int`, *optional*, defaults to 384):
            The size of the input image
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`List[int]`, *optional*, defaults to [64, 384]):
            The number of output channels of each conv layer.
        conv_kernel_size (`int`, *optional*, defaults to 7):
            The kernel size of convolutional layers in patch embedding.
        conv_stride (`int`, *optional*, defaults to 2):
            The stride size of convolutional layers in patch embedding.
        conv_padding (`int`, *optional*, defaults to 3):
            The padding size of convolutional layers in patch embedding.
        conv_bias (`bool`, *optional*, defaults to False):
            Whether the convolutional layers have bias
        pool_kernel_size (`int`, *optional*, defaults to 7):
            The kernel size of max pool layers in patch embedding.
        pool_stride (`int`, *optional*, defaults to 2):
            The stride size of max pool layers in patch embedding.
        pool_padding (`int`, *optional*, defaults to 3):
            The padding size of max pool layers in patch embedding.
        num_conv_layers (`int`, *optional*, defaults to 2):
            Number of convolutional embedding layers
        embed_dim (`int`, *optional*, defaults to 384):
            Dimension of each of the encoder blocks.
        num_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in each block of the Transformer encoder.
        mlp_ratio (`float`, *optional*, defaults to 3.0):
            Ratio of the size of the hidden layer compared to the size of the input layer of the FFNs in the encoder
            blocks.
        attention_drop_rate (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        drop_rate (`float`, *optional*, defaults to 0.0):
            The dropout ratio following linear projections.
        drop_path_rate (`float`, *optional*, defaults to `0.0`):
            The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
        num_transformer_layers(`int`, *optional*, defaults to 14):
            Number of transformer self-attention layers
        pos_emb_type (`str`, *optional*, defaults to 'learnable'):
            Type of positional embedding used. Alternative: 'sinusoidal'

    Example:

    ```python
    >>> from transformers import CctConfig, CctModel

    >>> # Initializing a Cct msft/cct style configuration
    >>> configuration = CctConfig()

    >>> # Initializing a model (with random weights) from the msft/cct style configuration
    >>> model = CctModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "cct"

    def __init__(
        self,
        img_size=384,
        in_channels=3,
        out_channels=[64, 384],
        conv_kernel_size=7,
        conv_stride=2,
        conv_padding=3,
        conv_bias=False,
        pool_kernel_size=3,
        pool_stride=2,
        pool_padding=1,
        num_conv_layers=2,
        embed_dim=384,
        num_heads=6,
        mlp_ratio=3,
        attention_drop_rate=0.1,
        drop_rate=0.0,
        drop_path_rate=0.0,
        num_transformer_layers=14,
        pos_emb_type="learnable",
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.img_size = img_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_channels = out_channels[-1]
        self.conv_kernel_size = conv_kernel_size
        self.conv_stride = conv_stride
        self.conv_padding = conv_padding
        self.conv_bias = conv_bias
        self.pool_kernel_size = pool_kernel_size
        self.pool_stride = pool_stride
        self.pool_padding = pool_padding
        self.num_conv_layers = num_conv_layers
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.mlp_ratio = mlp_ratio
        self.attention_drop_rate = attention_drop_rate
        self.drop_rate = drop_rate
        self.drop_path_rate = drop_path_rate
        self.num_transformer_layers = num_transformer_layers
        self.pos_emb_type = pos_emb_type