Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

Unconditional Pothole Images Generation

Generating New Images

from diffusers import DDPMPipeline
import torch
from PIL import Image

pipe = DDPMPipeline.from_pretrained("ridzy619/pothole-unconditional-generation")

device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)

images = pipe(batch_size=16).images

def make_grid(images, rows, cols):
    w, h = images[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    for i, image in enumerate(images):
        grid.paste(image, box=(i%cols*w, i//cols*h))
    return grid

images_grid = make_grid(images, 4, 4)
images_grid
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .