SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • train

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("rezarahim/bge-finetuned-detail")
# Run inference
sentences = [
    "What percentage of the company's accounts receivable balance as of January 28, 2024, was accounted for by two customers?",
    ' 24% and 11%, which is a total of 35%.',
    ' The change in equipment and assembly and test equipment resulted in a benefit of $135 million in operating income and $114 million in net income, or $0.05 per both basic and diluted share, for the fiscal year ended January 28, 2024.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.927
cosine_accuracy@3 0.9831
cosine_accuracy@5 0.9944
cosine_accuracy@10 1.0
cosine_precision@1 0.927
cosine_precision@3 0.3277
cosine_precision@5 0.1989
cosine_precision@10 0.1
cosine_recall@1 0.927
cosine_recall@3 0.9831
cosine_recall@5 0.9944
cosine_recall@10 1.0
cosine_ndcg@10 0.9683
cosine_mrr@10 0.9576
cosine_map@100 0.9576
dot_accuracy@1 0.927
dot_accuracy@3 0.9831
dot_accuracy@5 0.9944
dot_accuracy@10 1.0
dot_precision@1 0.927
dot_precision@3 0.3277
dot_precision@5 0.1989
dot_precision@10 0.1
dot_recall@1 0.927
dot_recall@3 0.9831
dot_recall@5 0.9944
dot_recall@10 1.0
dot_ndcg@10 0.9683
dot_mrr@10 0.9576
dot_map@100 0.9576

Training Details

Training Dataset

train

  • Dataset: train
  • Size: 178 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 178 samples:
    anchor positive
    type string string
    details
    • min: 10 tokens
    • mean: 23.63 tokens
    • max: 46 tokens
    • min: 4 tokens
    • mean: 66.67 tokens
    • max: 313 tokens
  • Samples:
    anchor positive
    What is the publication date of the NVIDIA Corporation Annual Report 2024? The publication date of the NVIDIA Corporation Annual Report 2024 is February 21st, 2024.
    What is the filing date of the 10-K report for NVIDIA Corporation in 2004? The filing dates of the 10-K reports for NVIDIA Corporation in 2004 are May 20th, March 29th, and April 25th.
    What is the purpose of the section of the filing that requires the registrant to indicate whether it has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T? The purpose of this section is to require the registrant to disclose whether it has submitted all required Interactive Data Files electronically, as mandated by Rule 405 of Regulation S-T, during the preceding 12 months or for the shorter period that the registrant was required to submit such files.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 25
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 25
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss bge-base-en_cosine_map@100
0 0 - 0.8574
0.7111 2 - 0.8591
1.7778 5 - 0.8757
2.8444 8 - 0.9012
3.5556 10 0.2885 -
3.9111 11 - 0.9134
4.9778 14 - 0.9277
5.6889 16 - 0.9391
6.7556 19 - 0.9463
7.1111 20 0.0644 -
7.8222 22 - 0.9506
8.8889 25 - 0.9515
9.9556 28 - 0.9555
10.6667 30 0.0333 0.9560
11.7333 33 - 0.9551
12.8 36 - 0.9569
13.8667 39 - 0.9579
14.2222 40 0.0157 -
14.9333 42 - 0.9576
16.0 45 - 0.9576
16.7111 47 - 0.9576
17.7778 50 0.0124 0.9576
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
8
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rezarahim/bge-finetuned-detail

Finetuned
(325)
this model

Evaluation results