|
--- |
|
license: mit |
|
--- |
|
|
|
Alpaca Lora adapter weight fine-tuned on following instruction dataset. |
|
|
|
https://huggingface.co./datasets/rewoo/planner_instruction_tuning_2k/blob/main/README.md |
|
|
|
Training script: borrowed from the official [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) implementation |
|
|
|
We use following parameter. |
|
|
|
``` |
|
python finetune.py \ |
|
--base_model 'decapoda-research/llama-7b-hf' \ |
|
--data_path 'rewoo/planner_instruction_tuning_2k' \ |
|
--output_dir './lora-alpaca-planner' \ |
|
--batch_size 128 \ |
|
--micro_batch_size 8 \ |
|
--num_epochs 10 \ |
|
--learning_rate 1e-4 \ |
|
--cutoff_len 1024 \ |
|
--val_set_size 200 \ |
|
--lora_r 8 \ |
|
--lora_alpha 16 \ |
|
--lora_dropout 0.05 \ |
|
--lora_target_modules '[q_proj,v_proj]' \ |
|
--train_on_inputs \ |
|
--group_by_length \ |
|
--resume_from_checkpoint 'tloen/alpaca-lora-7b' |
|
``` |