Update README.md
#5
by
pirroh
- opened
README.md
CHANGED
@@ -95,8 +95,13 @@ from transformers import AutoModelForCausalLM
|
|
95 |
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
96 |
```
|
97 |
|
98 |
-
To use the optimized Triton implementation of FlashAttention on GPUs with BF16 precision,
|
|
|
|
|
|
|
|
|
99 |
|
|
|
100 |
```python
|
101 |
from transformers import AutoModelForCausalLM
|
102 |
|
@@ -106,7 +111,7 @@ model.to(device='cuda:0', dtype=torch.bfloat16)
|
|
106 |
|
107 |
# forward pass
|
108 |
x = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
|
109 |
-
x = x.to(device='cuda:0'
|
110 |
y = model(x)
|
111 |
|
112 |
```
|
|
|
95 |
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
96 |
```
|
97 |
|
98 |
+
To use the optimized Triton implementation of FlashAttention on GPUs with BF16 precision, first install the following dependencies:
|
99 |
+
```
|
100 |
+
flash-attn==0.2.8
|
101 |
+
triton==2.0.0.dev20221202
|
102 |
+
```
|
103 |
|
104 |
+
Then, move the model to `bfloat16` and use it as follows:
|
105 |
```python
|
106 |
from transformers import AutoModelForCausalLM
|
107 |
|
|
|
111 |
|
112 |
# forward pass
|
113 |
x = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
|
114 |
+
x = x.to(device='cuda:0')
|
115 |
y = model(x)
|
116 |
|
117 |
```
|