Delete gpt_blocks.py
Browse files- gpt_blocks.py +0 -90
gpt_blocks.py
DELETED
@@ -1,90 +0,0 @@
|
|
1 |
-
# Copyright 2022 MosaicML Examples authors
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""GPT Blocks used for the GPT Model."""
|
5 |
-
|
6 |
-
from typing import Optional, Tuple
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
|
11 |
-
from .attention import MultiheadAttention
|
12 |
-
from .low_precision_layernorm import LPLayerNorm
|
13 |
-
|
14 |
-
|
15 |
-
class GPTMLP(nn.Module):
|
16 |
-
|
17 |
-
def __init__(self,
|
18 |
-
d_model: int,
|
19 |
-
mlp_ratio: int,
|
20 |
-
device: Optional[str] = None):
|
21 |
-
super().__init__()
|
22 |
-
self.mlp_up = nn.Linear(d_model, mlp_ratio * d_model, device=device)
|
23 |
-
self.mlp_act = nn.GELU(approximate='none')
|
24 |
-
self.mlp_down = nn.Linear(mlp_ratio * d_model, d_model, device=device)
|
25 |
-
self.mlp_down._is_residual = True # type: ignore
|
26 |
-
|
27 |
-
def forward(self, x):
|
28 |
-
return self.mlp_down(self.mlp_act(self.mlp_up(x)))
|
29 |
-
|
30 |
-
|
31 |
-
class GPTBlock(nn.Module):
|
32 |
-
|
33 |
-
def __init__(self,
|
34 |
-
attn_impl: str,
|
35 |
-
d_model: int,
|
36 |
-
n_heads: int,
|
37 |
-
mlp_ratio: int,
|
38 |
-
attn_clip_qkv: Optional[float] = None,
|
39 |
-
attn_qk_ln: bool = False,
|
40 |
-
softmax_scale: Optional[float] = None,
|
41 |
-
attn_pdrop: float = 0.0,
|
42 |
-
alibi: bool = False,
|
43 |
-
resid_pdrop: float = 0.0,
|
44 |
-
low_precision_layernorm: bool = False,
|
45 |
-
device: Optional[str] = None,
|
46 |
-
**kwargs):
|
47 |
-
del kwargs # unused, just to capture any extra args from the config
|
48 |
-
super().__init__()
|
49 |
-
|
50 |
-
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
51 |
-
|
52 |
-
self.ln_1 = layernorm_class(d_model, device=device)
|
53 |
-
self.attn = MultiheadAttention(
|
54 |
-
attn_impl=attn_impl,
|
55 |
-
attn_clip_qkv=attn_clip_qkv,
|
56 |
-
attn_qk_ln=attn_qk_ln,
|
57 |
-
softmax_scale=softmax_scale,
|
58 |
-
attn_pdrop=attn_pdrop,
|
59 |
-
d_model=d_model,
|
60 |
-
n_heads=n_heads,
|
61 |
-
device=device,
|
62 |
-
)
|
63 |
-
self.ln_2 = layernorm_class(d_model, device=device)
|
64 |
-
self.mlp = GPTMLP(
|
65 |
-
d_model=d_model,
|
66 |
-
mlp_ratio=mlp_ratio,
|
67 |
-
device=device,
|
68 |
-
)
|
69 |
-
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
70 |
-
self.resid_mlp_dropout = nn.Dropout(resid_pdrop)
|
71 |
-
|
72 |
-
def forward(
|
73 |
-
self,
|
74 |
-
x: torch.Tensor,
|
75 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
76 |
-
attn_bias: Optional[torch.Tensor] = None,
|
77 |
-
attention_mask: Optional[torch.ByteTensor] = None,
|
78 |
-
is_causal: bool = True,
|
79 |
-
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
80 |
-
a = self.ln_1(x)
|
81 |
-
b, _, past_key_value = self.attn(a,
|
82 |
-
past_key_value=past_key_value,
|
83 |
-
attn_bias=attn_bias,
|
84 |
-
attention_mask=attention_mask,
|
85 |
-
is_causal=is_causal)
|
86 |
-
x = x + self.resid_attn_dropout(b)
|
87 |
-
m = self.ln_2(x)
|
88 |
-
n = self.mlp(m)
|
89 |
-
x = x + self.resid_mlp_dropout(n)
|
90 |
-
return x, past_key_value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|