Delete configuration_replit_lm.py
Browse files- configuration_replit_lm.py +0 -168
configuration_replit_lm.py
DELETED
@@ -1,168 +0,0 @@
|
|
1 |
-
# Copyright 2022 MosaicML Examples authors
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""Forked for ReplitLM"""
|
5 |
-
|
6 |
-
"""A HuggingFace-style model configuration."""
|
7 |
-
|
8 |
-
|
9 |
-
from typing import Optional, Tuple, Union
|
10 |
-
from transformers import PretrainedConfig
|
11 |
-
class ReplitLMConfig(PretrainedConfig):
|
12 |
-
model_type = 'replit_lm'
|
13 |
-
|
14 |
-
def __init__(
|
15 |
-
self,
|
16 |
-
d_model: int = 2048,
|
17 |
-
n_heads: int = 16,
|
18 |
-
n_layers: int = 24,
|
19 |
-
mlp_ratio: int = 4,
|
20 |
-
max_seq_len: int = 2048,
|
21 |
-
vocab_size: int = 50368,
|
22 |
-
attn_pdrop: float = 0.0,
|
23 |
-
resid_pdrop: float = 0.0,
|
24 |
-
emb_pdrop: float = 0.0,
|
25 |
-
attn_impl: str = 'triton',
|
26 |
-
attn_qk_ln: bool = False,
|
27 |
-
attn_clip_qkv: Optional[float] = None,
|
28 |
-
softmax_scale: Optional[float] = None,
|
29 |
-
prefix_lm: Optional[bool] = False,
|
30 |
-
attn_uses_sequence_id: Optional[bool] = False,
|
31 |
-
alibi: bool = False,
|
32 |
-
alibi_bias_max: int = 8,
|
33 |
-
init_device: str = 'cpu',
|
34 |
-
logit_scale: Optional[Union[float, str]] = None,
|
35 |
-
no_bias: bool = False,
|
36 |
-
verbose: int = 0,
|
37 |
-
param_init_fn: str = 'kaiming_normal_',
|
38 |
-
init_div_is_residual: Union[int, float, str, bool] = True,
|
39 |
-
init_std: float = 0.02,
|
40 |
-
emb_init_std: Optional[float] = None,
|
41 |
-
emb_init_uniform_lim: Optional[Union[Tuple[float, float],
|
42 |
-
float]] = None,
|
43 |
-
init_gain: float = 0,
|
44 |
-
fan_mode: str = 'fan_in',
|
45 |
-
init_nonlinearity: str = 'relu',
|
46 |
-
embedding_fraction: float = 1.0,
|
47 |
-
low_precision_layernorm: bool = True,
|
48 |
-
use_cache: bool = False,
|
49 |
-
**kwargs,
|
50 |
-
):
|
51 |
-
"""The ReplitLM configuration class.
|
52 |
-
|
53 |
-
Args:
|
54 |
-
d_model (int): The size of the embedding dimension of the model.
|
55 |
-
n_heads (int): The number of attention heads.
|
56 |
-
n_layers (int): The number of layers in the model.
|
57 |
-
mlp_ratio (int): The ratio of the up/down scale in the MLP.
|
58 |
-
max_seq_len (int): The maximum sequence length of the model.
|
59 |
-
vocab_size (int): The size of the vocabulary.
|
60 |
-
attn_pdrop (float): The dropout probability for the attention layers.
|
61 |
-
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
62 |
-
emb_pdrop (float): The dropout probability for the embedding layer.
|
63 |
-
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
64 |
-
attn_qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
65 |
-
attn_clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
66 |
-
this value.
|
67 |
-
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
68 |
-
use the default scale of ``1/sqrt(d_keys)``.
|
69 |
-
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
70 |
-
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
71 |
-
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
72 |
-
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
73 |
-
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
74 |
-
which sub-sequence each token belongs to.
|
75 |
-
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
76 |
-
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
77 |
-
alibi_bias_max (int): The maximum value of the alibi bias.
|
78 |
-
init_device (str): The device to use for parameter initialization.
|
79 |
-
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
80 |
-
no_bias (bool): Whether to use bias in all layers.
|
81 |
-
verbose (int): The verbosity level. 0 is silent.
|
82 |
-
param_init_fn (str): The parameter initialization scheme to use. One of 'default_', 'baseline_', 'kaiming_uniform_',
|
83 |
-
'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or 'xavier_normal_'.
|
84 |
-
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
85 |
-
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
86 |
-
if using the baseline_ parameter initialization scheme.
|
87 |
-
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
88 |
-
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
89 |
-
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
90 |
-
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
91 |
-
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
92 |
-
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
93 |
-
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
94 |
-
low_precision_layernorm (bool): Whether to use low precision layer normalization.
|
95 |
-
use_cache (bool): Whether or not the model should return the last key/values attentions
|
96 |
-
"""
|
97 |
-
self.d_model = d_model
|
98 |
-
self.n_heads = n_heads
|
99 |
-
self.n_layers = n_layers
|
100 |
-
self.mlp_ratio = mlp_ratio
|
101 |
-
self.max_seq_len = max_seq_len
|
102 |
-
self.vocab_size = vocab_size
|
103 |
-
self.attn_pdrop = attn_pdrop
|
104 |
-
self.resid_pdrop = resid_pdrop
|
105 |
-
self.emb_pdrop = emb_pdrop
|
106 |
-
self.attn_impl = attn_impl
|
107 |
-
self.attn_qk_ln = attn_qk_ln
|
108 |
-
self.attn_clip_qkv = attn_clip_qkv
|
109 |
-
self.softmax_scale = softmax_scale
|
110 |
-
self.prefix_lm = prefix_lm
|
111 |
-
self.attn_uses_sequence_id = attn_uses_sequence_id
|
112 |
-
self.alibi = alibi
|
113 |
-
self.alibi_bias_max = alibi_bias_max
|
114 |
-
self.init_device = init_device
|
115 |
-
self.logit_scale = logit_scale
|
116 |
-
self.no_bias = no_bias
|
117 |
-
self.verbose = verbose
|
118 |
-
self.param_init_fn = param_init_fn
|
119 |
-
self.init_div_is_residual = init_div_is_residual
|
120 |
-
self.init_std = init_std
|
121 |
-
self.emb_init_std = emb_init_std
|
122 |
-
self.emb_init_uniform_lim = emb_init_uniform_lim
|
123 |
-
self.init_std = init_std
|
124 |
-
self.init_gain = init_gain
|
125 |
-
self.fan_mode = fan_mode
|
126 |
-
self.init_nonlinearity = init_nonlinearity
|
127 |
-
self.embedding_fraction = embedding_fraction
|
128 |
-
self.low_precision_layernorm = low_precision_layernorm
|
129 |
-
self.use_cache = use_cache
|
130 |
-
if 'name' in kwargs:
|
131 |
-
del kwargs['name']
|
132 |
-
if 'loss_fn' in kwargs:
|
133 |
-
del kwargs['loss_fn']
|
134 |
-
super().__init__(**kwargs)
|
135 |
-
|
136 |
-
self._validate_config()
|
137 |
-
|
138 |
-
def _validate_config(self):
|
139 |
-
if self.d_model % self.n_heads != 0:
|
140 |
-
raise ValueError('d_model must be divisible by n_heads')
|
141 |
-
if any(prob < 0 or prob > 1
|
142 |
-
for prob in [self.attn_pdrop, self.resid_pdrop, self.emb_pdrop]):
|
143 |
-
raise ValueError(
|
144 |
-
'attn_pdrop, resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1'
|
145 |
-
)
|
146 |
-
if self.attn_impl not in ['torch', 'flash', 'triton']:
|
147 |
-
raise ValueError(f'Unknown attn_impl={self.attn_impl}')
|
148 |
-
if self.prefix_lm and self.attn_impl not in ['torch', 'triton']:
|
149 |
-
raise NotImplementedError(
|
150 |
-
'prefix_lm only implemented with torch and triton attention.')
|
151 |
-
if self.alibi and self.attn_impl not in ['torch', 'triton']:
|
152 |
-
raise NotImplementedError(
|
153 |
-
'alibi only implemented with torch and triton attention.')
|
154 |
-
if self.attn_uses_sequence_id and self.attn_impl not in [
|
155 |
-
'torch', 'triton'
|
156 |
-
]:
|
157 |
-
raise NotImplementedError(
|
158 |
-
'attn_uses_sequence_id only implemented with torch and triton attention.'
|
159 |
-
)
|
160 |
-
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
161 |
-
raise ValueError(
|
162 |
-
'model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!'
|
163 |
-
)
|
164 |
-
if isinstance(self.logit_scale,
|
165 |
-
str) and self.logit_scale != 'inv_sqrt_d_model':
|
166 |
-
raise ValueError(
|
167 |
-
f"{self.logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
|
168 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|