Delete low_precision_layernorm.py
Browse files- low_precision_layernorm.py +0 -35
low_precision_layernorm.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
|
4 |
-
|
5 |
-
class LPLayerNorm(torch.nn.LayerNorm):
|
6 |
-
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
7 |
-
super().__init__(
|
8 |
-
normalized_shape=normalized_shape,
|
9 |
-
eps=eps,
|
10 |
-
elementwise_affine=elementwise_affine,
|
11 |
-
device=device,
|
12 |
-
dtype=dtype,
|
13 |
-
)
|
14 |
-
|
15 |
-
def forward(self, x):
|
16 |
-
module_device = x.device
|
17 |
-
downcast_x = _cast_if_autocast_enabled(x)
|
18 |
-
downcast_weight = _cast_if_autocast_enabled(
|
19 |
-
self.weight) if self.weight is not None else self.weight
|
20 |
-
downcast_bias = _cast_if_autocast_enabled(
|
21 |
-
self.bias) if self.bias is not None else self.bias
|
22 |
-
with torch.autocast(enabled=False, device_type=module_device.type):
|
23 |
-
return F.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
24 |
-
|
25 |
-
|
26 |
-
def _cast_if_autocast_enabled(tensor):
|
27 |
-
if torch.is_autocast_enabled():
|
28 |
-
if tensor.device.type == 'cuda':
|
29 |
-
dtype = torch.get_autocast_gpu_dtype()
|
30 |
-
elif tensor.device.type == 'cpu':
|
31 |
-
dtype = torch.get_autocast_cpu_dtype()
|
32 |
-
else:
|
33 |
-
raise NotImplementedError()
|
34 |
-
return tensor.to(dtype=dtype)
|
35 |
-
return tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|