Delete replit_lm.py
Browse files- replit_lm.py +0 -453
replit_lm.py
DELETED
@@ -1,453 +0,0 @@
|
|
1 |
-
# Copyright 2022 MosaicML Examples authors
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""Forked from the MosaicGPT model class from the Mosaic Examples codebase of date May 1st, 2023.
|
5 |
-
Permalink: https://github.com/mosaicml/examples/blob/52cd4fef69497f225a034fcd10692f8613732d10/examples/llm/src/models/mosaic_gpt/mosaic_gpt.py
|
6 |
-
"""
|
7 |
-
|
8 |
-
"""A simple, flexible implementation of a GPT model.
|
9 |
-
|
10 |
-
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
11 |
-
"""
|
12 |
-
|
13 |
-
import math
|
14 |
-
import torch
|
15 |
-
import torch.nn as nn
|
16 |
-
import torch.nn.functional as F
|
17 |
-
import warnings
|
18 |
-
|
19 |
-
from transformers import PreTrainedModel
|
20 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
21 |
-
from typing import List, Optional, Tuple
|
22 |
-
|
23 |
-
from .attention import attn_bias as module_attn_bias, attn_bias_shape as module_attn_bias_shape
|
24 |
-
from .gpt_blocks import GPTBlock
|
25 |
-
from .configuration_replit_lm import \
|
26 |
-
ReplitLMConfig
|
27 |
-
from .param_init_fns import MODEL_INIT_REGISTRY
|
28 |
-
from .low_precision_layernorm import LPLayerNorm
|
29 |
-
|
30 |
-
|
31 |
-
class ReplitLM(PreTrainedModel):
|
32 |
-
config_class = ReplitLMConfig
|
33 |
-
base_model_prefix = 'replit_lm'
|
34 |
-
|
35 |
-
def __init__(self, config: ReplitLMConfig):
|
36 |
-
super().__init__(config)
|
37 |
-
|
38 |
-
if config.attn_impl == 'flash' and config.alibi:
|
39 |
-
raise RuntimeError("ALiBi is not supported with flash attention. Please use triton or torch.")
|
40 |
-
|
41 |
-
self.attn_impl = config.attn_impl
|
42 |
-
self.prefix_lm = config.prefix_lm
|
43 |
-
self.attn_uses_sequence_id = config.attn_uses_sequence_id
|
44 |
-
self.alibi = config.alibi
|
45 |
-
self.alibi_bias_max = config.alibi_bias_max
|
46 |
-
|
47 |
-
layernorm_class = LPLayerNorm if config.low_precision_layernorm else nn.LayerNorm
|
48 |
-
|
49 |
-
# CogView (https://arxiv.org/abs/2105.13290) and GLM-130B (https://arxiv.org/abs/2210.02414)
|
50 |
-
# both report this helping with stabilizing training
|
51 |
-
self.embedding_fraction = config.embedding_fraction
|
52 |
-
|
53 |
-
self.transformer = nn.ModuleDict({
|
54 |
-
'wte':
|
55 |
-
nn.Embedding(config.vocab_size,
|
56 |
-
config.d_model,
|
57 |
-
device=config.init_device)
|
58 |
-
})
|
59 |
-
if not self.alibi:
|
60 |
-
self.transformer.update({
|
61 |
-
'wpe':
|
62 |
-
nn.Embedding(config.max_seq_len,
|
63 |
-
config.d_model,
|
64 |
-
device=config.init_device)
|
65 |
-
})
|
66 |
-
self.transformer.update({'emb_drop': nn.Dropout(config.emb_pdrop)})
|
67 |
-
self.transformer.update({
|
68 |
-
'blocks':
|
69 |
-
nn.ModuleList([
|
70 |
-
GPTBlock(device=config.init_device,
|
71 |
-
**config.to_dict())
|
72 |
-
for _ in range(config.n_layers)
|
73 |
-
])
|
74 |
-
})
|
75 |
-
self.transformer.update({
|
76 |
-
'ln_f': layernorm_class(config.d_model, device=config.init_device)
|
77 |
-
})
|
78 |
-
|
79 |
-
# enables scaling output logits; similar to a softmax "temperature"
|
80 |
-
# PaLM paper uses scale 1/sqrt(config.d_model)
|
81 |
-
self.logit_scale = None
|
82 |
-
if config.logit_scale is not None:
|
83 |
-
logit_scale = config.logit_scale
|
84 |
-
if isinstance(logit_scale, str):
|
85 |
-
if logit_scale == 'inv_sqrt_d_model':
|
86 |
-
logit_scale = 1 / math.sqrt(config.d_model)
|
87 |
-
else:
|
88 |
-
raise ValueError(
|
89 |
-
f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
|
90 |
-
)
|
91 |
-
self.logit_scale = logit_scale
|
92 |
-
|
93 |
-
if config.init_device != 'meta':
|
94 |
-
print(
|
95 |
-
f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.'
|
96 |
-
)
|
97 |
-
self.apply(self.param_init_fn)
|
98 |
-
|
99 |
-
self.is_causal = not self.prefix_lm
|
100 |
-
|
101 |
-
# define attn mask
|
102 |
-
self._attn_bias_initialized = False
|
103 |
-
self.attn_bias = None
|
104 |
-
self.attn_bias_shape = module_attn_bias_shape(
|
105 |
-
self.attn_impl,
|
106 |
-
config.n_heads,
|
107 |
-
config.max_seq_len,
|
108 |
-
self.alibi,
|
109 |
-
prefix_lm=self.prefix_lm,
|
110 |
-
causal=self.is_causal,
|
111 |
-
use_sequence_id=self.attn_uses_sequence_id)
|
112 |
-
|
113 |
-
if config.no_bias:
|
114 |
-
for module in self.modules():
|
115 |
-
if hasattr(module, 'bias') and isinstance(
|
116 |
-
module.bias, nn.Parameter):
|
117 |
-
if config.verbose:
|
118 |
-
print(f'Removing bias ({module.bias}) from {module}.')
|
119 |
-
module.register_parameter('bias', None)
|
120 |
-
|
121 |
-
if config.verbose and config.verbose > 2:
|
122 |
-
print(self)
|
123 |
-
|
124 |
-
@torch.no_grad()
|
125 |
-
def _attn_bias(self,
|
126 |
-
device,
|
127 |
-
dtype,
|
128 |
-
attention_mask: Optional[torch.ByteTensor] = None,
|
129 |
-
prefix_mask: Optional[torch.ByteTensor] = None,
|
130 |
-
sequence_id: Optional[torch.LongTensor] = None):
|
131 |
-
if not self._attn_bias_initialized:
|
132 |
-
if self.attn_bias_shape:
|
133 |
-
self.attn_bias = torch.zeros(self.attn_bias_shape,
|
134 |
-
device=device,
|
135 |
-
dtype=dtype)
|
136 |
-
self.attn_bias = module_attn_bias(
|
137 |
-
self.attn_impl,
|
138 |
-
self.attn_bias,
|
139 |
-
self.config.n_heads,
|
140 |
-
self.config.max_seq_len,
|
141 |
-
causal=self.is_causal,
|
142 |
-
alibi=self.alibi,
|
143 |
-
alibi_bias_max=self.alibi_bias_max)
|
144 |
-
self._attn_bias_initialized = True
|
145 |
-
|
146 |
-
# flash does not support prefix_lm and will incorporate any
|
147 |
-
# attention_mask inside the attention module
|
148 |
-
if self.attn_impl == 'flash':
|
149 |
-
return self.attn_bias, attention_mask
|
150 |
-
|
151 |
-
attn_bias = self.attn_bias
|
152 |
-
|
153 |
-
# If using torch or triton, we incorporate the prefix_mask (if appropriate)
|
154 |
-
if self.prefix_lm:
|
155 |
-
assert isinstance(attn_bias, torch.Tensor) # pyright
|
156 |
-
assert isinstance(prefix_mask, torch.Tensor) # pyright
|
157 |
-
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
158 |
-
|
159 |
-
# If using torch or triton, we incorporate sequence_id (if appropriate)
|
160 |
-
if self.attn_uses_sequence_id and sequence_id is not None:
|
161 |
-
assert isinstance(attn_bias, torch.Tensor) # pyright
|
162 |
-
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
163 |
-
|
164 |
-
# If using torch or triton, we incorporate attention_mask. This will output
|
165 |
-
# None in place of attention_mask since it will not be further needed in the
|
166 |
-
# attention modules.
|
167 |
-
if attention_mask is not None:
|
168 |
-
s_k = attention_mask.shape[-1]
|
169 |
-
if attn_bias is None:
|
170 |
-
attn_bias = torch.zeros((1, 1, 1, s_k),
|
171 |
-
device=device,
|
172 |
-
dtype=dtype)
|
173 |
-
else:
|
174 |
-
attn_bias = attn_bias[:, :, :, -s_k:]
|
175 |
-
if prefix_mask is not None and (attention_mask.shape !=
|
176 |
-
prefix_mask.shape):
|
177 |
-
raise ValueError(
|
178 |
-
f'attention_mask shape={attention_mask.shape} ' +\
|
179 |
-
f'and prefix_mask shape={prefix_mask.shape} are not equal.'
|
180 |
-
)
|
181 |
-
min_val = torch.finfo(attn_bias.dtype).min
|
182 |
-
attn_bias = attn_bias.masked_fill(
|
183 |
-
~attention_mask.view(-1, 1, 1, s_k), min_val)
|
184 |
-
|
185 |
-
return attn_bias, None
|
186 |
-
|
187 |
-
def _apply_prefix_mask(self, attn_bias: torch.Tensor,
|
188 |
-
prefix_mask: torch.Tensor):
|
189 |
-
s_k, s_q = attn_bias.shape[-2:]
|
190 |
-
if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len):
|
191 |
-
raise ValueError(
|
192 |
-
'attn_bias does not match the expected shape. ' +\
|
193 |
-
f'The last two dimensions should both be {self.config.max_length} ' +\
|
194 |
-
f'but are {s_k} and {s_q}.'
|
195 |
-
)
|
196 |
-
seq_len = prefix_mask.shape[-1]
|
197 |
-
if seq_len > self.config.max_seq_len:
|
198 |
-
raise ValueError(
|
199 |
-
f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
|
200 |
-
)
|
201 |
-
|
202 |
-
# select seq_len subset of attn mask
|
203 |
-
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
204 |
-
|
205 |
-
# Mix the causal max and the bidirectional mask to get the full
|
206 |
-
# allowable attention (i.e. full = not accounting for padding yet)
|
207 |
-
causal = torch.tril(
|
208 |
-
torch.ones((seq_len, seq_len),
|
209 |
-
dtype=torch.bool,
|
210 |
-
device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
211 |
-
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
212 |
-
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
213 |
-
|
214 |
-
min_val = torch.finfo(attn_bias.dtype).min
|
215 |
-
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
216 |
-
|
217 |
-
return attn_bias
|
218 |
-
|
219 |
-
def _apply_sequence_id(self, attn_bias: torch.Tensor,
|
220 |
-
sequence_id: torch.LongTensor):
|
221 |
-
seq_len = sequence_id.shape[-1]
|
222 |
-
if seq_len > self.config.max_seq_len:
|
223 |
-
raise ValueError(
|
224 |
-
f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
|
225 |
-
)
|
226 |
-
|
227 |
-
# select seq_len subset of attn mask
|
228 |
-
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
229 |
-
|
230 |
-
# Restrict attention to tokens that share the same value
|
231 |
-
# in sequence_id
|
232 |
-
cannot_attend = torch.logical_not(
|
233 |
-
torch.eq(sequence_id.view(-1, seq_len, 1),
|
234 |
-
sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
|
235 |
-
min_val = torch.finfo(attn_bias.dtype).min
|
236 |
-
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
237 |
-
|
238 |
-
return attn_bias
|
239 |
-
|
240 |
-
def forward(
|
241 |
-
self,
|
242 |
-
input_ids: torch.LongTensor,
|
243 |
-
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
244 |
-
attention_mask: Optional[torch.ByteTensor] = None,
|
245 |
-
prefix_mask: Optional[torch.ByteTensor] = None,
|
246 |
-
sequence_id: Optional[torch.LongTensor] = None,
|
247 |
-
return_dict: Optional[bool] = None,
|
248 |
-
output_attentions: Optional[bool] = None,
|
249 |
-
output_hidden_states: Optional[bool] = None,
|
250 |
-
use_cache: Optional[bool] = None):
|
251 |
-
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
252 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
253 |
-
|
254 |
-
# These args are passed in by keyword in huggingface's generate function
|
255 |
-
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/generation/utils.py#L2201-L2206
|
256 |
-
# but have not yet been fully implemented in ReplitLM
|
257 |
-
if not return_dict:
|
258 |
-
raise NotImplementedError(
|
259 |
-
'return_dict False is not implemented yet for ReplitLM')
|
260 |
-
if output_attentions:
|
261 |
-
raise NotImplementedError(
|
262 |
-
'output_attentions is not implemented yet for ReplitLM')
|
263 |
-
|
264 |
-
if attention_mask is not None and attention_mask[:, 0].sum(
|
265 |
-
) != attention_mask.shape[0] and self.training:
|
266 |
-
raise NotImplementedError(
|
267 |
-
'ReplitLM does not support training with left padding.')
|
268 |
-
|
269 |
-
if self.prefix_lm and prefix_mask is None:
|
270 |
-
raise ValueError(
|
271 |
-
'prefix_mask is a required argument when ReplitLM is configured with prefix_lm=True.'
|
272 |
-
)
|
273 |
-
|
274 |
-
if self.training:
|
275 |
-
if self.attn_uses_sequence_id and sequence_id is None:
|
276 |
-
raise ValueError(
|
277 |
-
'sequence_id is a required argument when ReplitLM is configured with attn_uses_sequence_id=True ' +\
|
278 |
-
'and the model is in train mode.'
|
279 |
-
)
|
280 |
-
elif (self.attn_uses_sequence_id is False) and (sequence_id
|
281 |
-
is not None):
|
282 |
-
warnings.warn(
|
283 |
-
'ReplitLM received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' +\
|
284 |
-
'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.'
|
285 |
-
)
|
286 |
-
|
287 |
-
S = input_ids.size(1)
|
288 |
-
|
289 |
-
assert (
|
290 |
-
S <= self.config.max_seq_len
|
291 |
-
), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
292 |
-
|
293 |
-
tok_emb = self.transformer.wte(input_ids) # type: ignore
|
294 |
-
if self.alibi:
|
295 |
-
x = tok_emb
|
296 |
-
else:
|
297 |
-
past_position = 0
|
298 |
-
if past_key_values is not None:
|
299 |
-
if len(past_key_values) != self.config.n_layers:
|
300 |
-
raise ValueError(
|
301 |
-
f'past_key_values must provide a past_key_value for each attention ' +\
|
302 |
-
f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).'
|
303 |
-
)
|
304 |
-
# get the key tensor whose spec should be (batch, seq, dim), and
|
305 |
-
# collect the `seq`, so that the position embedding is shifted
|
306 |
-
past_position = past_key_values[0][0].size(1)
|
307 |
-
|
308 |
-
if S + past_position > self.config.max_seq_len:
|
309 |
-
raise ValueError(
|
310 |
-
f'Cannot forward input with past sequence length {past_position} and current sequence length '
|
311 |
-
f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.'
|
312 |
-
)
|
313 |
-
pos = torch.arange(past_position,
|
314 |
-
S + past_position,
|
315 |
-
dtype=torch.long,
|
316 |
-
device=input_ids.device).unsqueeze(0)
|
317 |
-
if attention_mask is not None:
|
318 |
-
# adjust the position indices to account for padding tokens
|
319 |
-
pos = torch.clamp(pos - torch.cumsum(
|
320 |
-
(~attention_mask).to(torch.int32), dim=1)[:,
|
321 |
-
past_position:],
|
322 |
-
min=0)
|
323 |
-
|
324 |
-
pos_emb = self.transformer.wpe(pos) # type: ignore
|
325 |
-
x = tok_emb + pos_emb
|
326 |
-
|
327 |
-
if self.embedding_fraction == 1:
|
328 |
-
x = self.transformer.emb_drop(x) # type: ignore
|
329 |
-
else:
|
330 |
-
# this implementation is proposed on page 7 of the GLM-130B paper https://arxiv.org/abs/2210.02414
|
331 |
-
x_shrunk = (x * self.embedding_fraction) + (
|
332 |
-
x.detach() * (1 - self.embedding_fraction))
|
333 |
-
assert isinstance(self.transformer.emb_drop, nn.Module) # pyright
|
334 |
-
x = self.transformer.emb_drop(x_shrunk)
|
335 |
-
|
336 |
-
attn_bias, attention_mask = self._attn_bias(
|
337 |
-
device=x.device,
|
338 |
-
dtype=x.dtype,
|
339 |
-
attention_mask=attention_mask,
|
340 |
-
prefix_mask=prefix_mask,
|
341 |
-
sequence_id=sequence_id)
|
342 |
-
|
343 |
-
# initialize the past key values cache if it should be used
|
344 |
-
if use_cache and past_key_values is None:
|
345 |
-
past_key_values = [() for _ in range(self.config.n_layers)
|
346 |
-
] # type: ignore
|
347 |
-
|
348 |
-
all_hidden_states = () if output_hidden_states else None
|
349 |
-
for b_idx, block in enumerate(self.transformer.blocks): # type: ignore
|
350 |
-
if output_hidden_states:
|
351 |
-
assert all_hidden_states is not None # pyright
|
352 |
-
all_hidden_states = all_hidden_states + (x,)
|
353 |
-
past_key_value = past_key_values[
|
354 |
-
b_idx] if past_key_values is not None else None
|
355 |
-
x, past_key_value = block(x,
|
356 |
-
past_key_value=past_key_value,
|
357 |
-
attn_bias=attn_bias,
|
358 |
-
attention_mask=attention_mask,
|
359 |
-
is_causal=self.is_causal)
|
360 |
-
if past_key_values is not None:
|
361 |
-
past_key_values[b_idx] = past_key_value
|
362 |
-
|
363 |
-
x = self.transformer.ln_f(x) # type: ignore
|
364 |
-
|
365 |
-
# output embedding weight tied to input embedding
|
366 |
-
assert isinstance(self.transformer.wte, nn.Module) # pyright
|
367 |
-
assert isinstance(self.transformer.wte.weight, torch.Tensor) # pyright
|
368 |
-
logits = F.linear(x, self.transformer.wte.weight, None)
|
369 |
-
|
370 |
-
if self.logit_scale is not None:
|
371 |
-
if self.logit_scale == 0:
|
372 |
-
warnings.warn(
|
373 |
-
f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.'
|
374 |
-
)
|
375 |
-
logits *= self.logit_scale
|
376 |
-
|
377 |
-
return CausalLMOutputWithPast(logits=logits,
|
378 |
-
past_key_values=past_key_values,
|
379 |
-
hidden_states=all_hidden_states)
|
380 |
-
|
381 |
-
# Param Initialization, needed for device='meta' fast initialization
|
382 |
-
def param_init_fn(self, module):
|
383 |
-
init_fn_name = self.config.param_init_fn
|
384 |
-
if self.config.verbose > 1:
|
385 |
-
warnings.warn(f'Using {init_fn_name} initialization.')
|
386 |
-
MODEL_INIT_REGISTRY[init_fn_name](module=module,
|
387 |
-
**self.config.to_dict())
|
388 |
-
|
389 |
-
# FSDP Wrap function
|
390 |
-
def fsdp_wrap_fn(self, module):
|
391 |
-
return isinstance(module, GPTBlock)
|
392 |
-
|
393 |
-
# Activation Checkpointing
|
394 |
-
def activation_checkpointing_fn(self, module):
|
395 |
-
return isinstance(module, GPTBlock)
|
396 |
-
|
397 |
-
def prepare_inputs_for_generation(self,
|
398 |
-
input_ids,
|
399 |
-
past_key_values=None,
|
400 |
-
inputs_embeds=None,
|
401 |
-
**kwargs):
|
402 |
-
if inputs_embeds is not None:
|
403 |
-
raise NotImplementedError(
|
404 |
-
'inputs_embeds is not implemented for ReplitLM yet')
|
405 |
-
|
406 |
-
attention_mask = kwargs['attention_mask'].bool()
|
407 |
-
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
408 |
-
raise NotImplementedError(
|
409 |
-
'ReplitLM does not support generation with right padding.')
|
410 |
-
|
411 |
-
if self.attn_uses_sequence_id and self.training:
|
412 |
-
sequence_id = torch.zeros_like(input_ids[:1])
|
413 |
-
else:
|
414 |
-
sequence_id = None
|
415 |
-
|
416 |
-
if past_key_values is not None:
|
417 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
418 |
-
|
419 |
-
if self.prefix_lm:
|
420 |
-
# Leverage a convenience of sequential generation!
|
421 |
-
prefix_mask = torch.ones_like(attention_mask)
|
422 |
-
# This requires that we're using the cache
|
423 |
-
if kwargs.get('use_cache') == False:
|
424 |
-
raise NotImplementedError(
|
425 |
-
'ReplitLM with prefix_lm=True does not support use_cache=False.'
|
426 |
-
)
|
427 |
-
else:
|
428 |
-
prefix_mask = None
|
429 |
-
|
430 |
-
return {
|
431 |
-
'input_ids': input_ids,
|
432 |
-
'attention_mask': attention_mask,
|
433 |
-
'prefix_mask': prefix_mask,
|
434 |
-
'sequence_id': sequence_id,
|
435 |
-
'past_key_values': past_key_values,
|
436 |
-
'use_cache': kwargs.get('use_cache', True),
|
437 |
-
}
|
438 |
-
|
439 |
-
@staticmethod
|
440 |
-
def _reorder_cache(past_key_values, beam_idx):
|
441 |
-
"""Used by HuggingFace generate when using beam search with kv-caching.
|
442 |
-
|
443 |
-
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
444 |
-
for an example in transformers.
|
445 |
-
"""
|
446 |
-
reordered_past = []
|
447 |
-
for layer_past in past_key_values:
|
448 |
-
reordered_past += [
|
449 |
-
tuple(
|
450 |
-
past_state.index_select(0, beam_idx)
|
451 |
-
for past_state in layer_past)
|
452 |
-
]
|
453 |
-
return reordered_past
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|