|
--- |
|
license: cc-by-sa-4.0 |
|
datasets: |
|
- bigcode/the-stack-dedup |
|
tags: |
|
- code |
|
language: |
|
- code |
|
programming_language: |
|
- Markdown |
|
- Java |
|
- JavaScript |
|
- Python |
|
- TypeScript |
|
- PHP |
|
- SQL |
|
- JSX |
|
- reStructuredText |
|
- Rust |
|
- C |
|
- CSS |
|
- Go |
|
- C++ |
|
- HTML |
|
- Vue |
|
- Ruby |
|
- Jupyter Notebook |
|
- R |
|
- Shell |
|
model-index: |
|
- name: replit-code-v1-3b |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: openai_humaneval |
|
name: HumanEval (Python) |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.219 |
|
verified: false |
|
--- |
|
|
|
|
|
# replit-code-v1-3b |
|
|
|
[**🧑💻 Test it on our Demo Space! 🧑💻**](https://huggingface.co./spaces/replit/replit-code-v1-3b-demo) |
|
|
|
`replit-code-v1-3b` is a 2.7B Causal Language Model focused on **Code Completion**. The model has been trained on a subset of the Stack Dedup v1.2 dataset. |
|
|
|
The training mixture includes **20 different languages**, listed here in descending order of number of tokens: |
|
<br/> |
|
`Markdown`, `Java`, `JavaScript`, `Python`, `TypeScript`, `PHP`, `SQL`, `JSX`, `reStructuredText`, `Rust`, `C`, `CSS`, `Go`, `C++`, `HTML`, `Vue`, `Ruby`, `Jupyter Notebook`, `R`, `Shell` |
|
|
|
In total, the training dataset contains 175B tokens, which were repeated over 3 epochs -- in total, `replit-code-v1-3b` has been trained on **525B** tokens (~195 tokens per parameter). |
|
|
|
|
|
## How to use the model |
|
|
|
|
|
```python |
|
from transformers import AutoModelForCausalLM |
|
|
|
# load model |
|
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True) |
|
``` |
|
|
|
To use the optimized Triton implementation of FlashAttention on GPUs with BF16 precision, move the model to `bfloat16` and use it as follows: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM |
|
|
|
# load model |
|
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True, attn_impl='triton') |
|
model.to(device='cuda:0', dtype=torch.bfloat16) |
|
|
|
# forward pass |
|
x = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]) |
|
x = x.to(device='cuda:0', dtype=torch.bfloat16) |
|
y = model(x) |
|
|
|
``` |
|
|
|
Note that `trust_remote_code=True` is passed to the `from_pretrained` method because ReplitLM is not a class in the |
|
[Transformers](https://huggingface.co./docs/transformers/index) library. |
|
|
|
## Tokenizer |
|
|
|
We have trained a custom SentencePiece Unigram tokenizer optimized with a vocabulary specifically for code of 32768 tokens. |
|
|
|
Note that using this requires the `sentencepiece` library to be installed. |
|
|
|
The tokenizer can be used as follows: |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
|
|
# load tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True) |
|
|
|
# single input encoding + generation |
|
x = tokenizer.encode('def hello():\n print("hello world")\n', return_tensors='pt') |
|
y = model.generate(x) |
|
|
|
# decoding, clean_up_tokenization_spaces=False to ensure syntactical correctness |
|
generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
print(generated_code) |
|
``` |
|
|
|
Note that: |
|
- `trust_remote_code=True` is passed to the `from_pretrained` method because ReplitLM is not a class in the [Transformers](https://huggingface.co./docs/transformers/index) library. |
|
- `clean_up_tokenization_spaces=False` is meant to avoid removing spaces in the output, because that would affect the syntactical correctness of the generated code. |
|
|
|
|
|
## Generation |
|
|
|
You can generate code using the `transformers` library as follows: |
|
|
|
```python |
|
tokenizer = transformers.AutoTokenizer.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True) |
|
model = transformers.AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True) |
|
|
|
x = tokenizer.encode('def fibonacci(n): ', return_tensors='pt') |
|
y = model.generate(x, max_length=100, do_sample=True, top_p=0.95, top_k=4, temperature=0.2, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) |
|
|
|
# decoding, clean_up_tokenization_spaces=False to ensure syntactical correctness |
|
generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
print(generated_code) |
|
``` |
|
|
|
Experiment with different decoding methods and parameters to get the best results for your use case. |
|
|
|
## Post Processing |
|
|
|
Note that as with all code generation models, post-processing of the generated code is important. In particular, the following post-processing steps are recommended: |
|
- stop generation when the EOS token is encountered |
|
- remove trailing whitespaces |
|
- set `max_tokens` to a reasonable value based on your completion use case |
|
- truncate generation to stop words such as `return`, `def`, "```", "`\n\n\n`" to avoid generating incomplete code when `max_tokens` is larger than the length of the expected generated code. |
|
|
|
## Inference |
|
Coming soon. |
|
|
|
## Evaluation |
|
Coming soon. |
|
|
|
## Model Hash |
|
5bc28ce32c6f9aec935ead7b60ea1c46 |