Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • _load_in_8bit: False
  • _load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16
  • bnb_4bit_quant_storage: uint8
  • load_in_4bit: True
  • load_in_8bit: False

Framework versions

  • PEFT 0.5.0

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard

Metric Value
Average 45.25
ENEM Challenge (No Images) 31.77
BLUEX (No Images) 24.20
OAB Exams 27.84
Assin2 RTE 69.51
Assin2 STS 30.31
FaQuAD NLI 55.55
HateBR Binary 53.18
PT Hate Speech Binary 64.74
tweetSentBR 50.18
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for recogna-nlp/gembode-2b-ultraalpaca

Adapters
2 models

Space using recogna-nlp/gembode-2b-ultraalpaca 1

Collection including recogna-nlp/gembode-2b-ultraalpaca

Evaluation results