|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: image_classification |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.5625 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# image_classification |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3383 |
|
- Accuracy: 0.5625 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 80 | 1.6519 | 0.3312 | |
|
| No log | 2.0 | 160 | 1.4509 | 0.4125 | |
|
| No log | 3.0 | 240 | 1.3641 | 0.5062 | |
|
| No log | 4.0 | 320 | 1.2676 | 0.5875 | |
|
| No log | 5.0 | 400 | 1.2718 | 0.5188 | |
|
| No log | 6.0 | 480 | 1.2250 | 0.5125 | |
|
| 1.2828 | 7.0 | 560 | 1.1933 | 0.55 | |
|
| 1.2828 | 8.0 | 640 | 1.1538 | 0.575 | |
|
| 1.2828 | 9.0 | 720 | 1.2479 | 0.55 | |
|
| 1.2828 | 10.0 | 800 | 1.2487 | 0.575 | |
|
| 1.2828 | 11.0 | 880 | 1.2418 | 0.5938 | |
|
| 1.2828 | 12.0 | 960 | 1.1514 | 0.6062 | |
|
| 0.5147 | 13.0 | 1040 | 1.2563 | 0.5563 | |
|
| 0.5147 | 14.0 | 1120 | 1.2933 | 0.5813 | |
|
| 0.5147 | 15.0 | 1200 | 1.2857 | 0.5813 | |
|
| 0.5147 | 16.0 | 1280 | 1.3044 | 0.575 | |
|
| 0.5147 | 17.0 | 1360 | 1.4134 | 0.5687 | |
|
| 0.5147 | 18.0 | 1440 | 1.3277 | 0.5875 | |
|
| 0.2675 | 19.0 | 1520 | 1.2963 | 0.575 | |
|
| 0.2675 | 20.0 | 1600 | 1.2049 | 0.6125 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|