whisper-small-tk / README.md
ray0303's picture
End of training
2b67b58 verified
metadata
library_name: transformers
language:
  - tk
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small TK - Abdyrahman Gudratullayew
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: tk
          split: test
          args: 'config: tk, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 57.933673469387756

Whisper Small TK - Abdyrahman Gudratullayew

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3114
  • Wer: 57.9337

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0083 14.0845 1000 1.1117 60.3571
0.0003 28.1690 2000 1.2099 57.7041
0.0002 42.2535 3000 1.2640 58.0102
0.0001 56.3380 4000 1.2973 58.1378
0.0001 70.4225 5000 1.3114 57.9337

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0