xml-roberta-HU-Com / README.md
raulgdp's picture
End of training
77a8515 verified
metadata
base_model: daveni/twitter-xlm-roberta-emotion-es
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: xml-roberta-HU-Com
    results: []

xml-roberta-HU-Com

This model is a fine-tuned version of daveni/twitter-xlm-roberta-emotion-es on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3693
  • Accuracy: 0.7911
  • F1: 0.7440
  • Precision: 0.7415
  • Recall: 0.7466

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6717 1.0 90 0.5918 0.6852 0.5272 0.6774 0.4315
0.453 2.0 180 0.5358 0.7465 0.6403 0.7570 0.5548
0.2631 3.0 270 0.7088 0.7744 0.7273 0.7152 0.7397
0.1936 4.0 360 0.7078 0.7939 0.7566 0.7278 0.7877
0.1273 5.0 450 1.1057 0.7772 0.7436 0.6988 0.7945
0.066 6.0 540 1.1990 0.7799 0.7168 0.7519 0.6849
0.0286 7.0 630 1.2457 0.7994 0.7584 0.7434 0.7740
0.0261 8.0 720 1.3297 0.7799 0.7106 0.7638 0.6644
0.0097 9.0 810 1.3733 0.7855 0.7354 0.7379 0.7329
0.0071 10.0 900 1.3693 0.7911 0.7440 0.7415 0.7466

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1