Centrum
Centrum is a pretrained model for multi-document summarization, trained with centroid-based pretraining objective on the NewSHead dataset. It is initialized from allenai/led-base-16384. The details of the approach are mentioned in the preprint Multi-Document Summarization with Centroid-Based Pretraining (Ratish Puduppully and Mark Steedman). It achieves the following results on the evaluation set:
- Loss: 3.5568
Model description
The script for training and inference of Centrum is available on https://github.com/ratishsp/centrum
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- training_steps: 100000
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.1628 | 0.05 | 500 | 4.0732 |
4.0278 | 0.09 | 1000 | 3.9800 |
4.0008 | 0.14 | 1500 | 3.9283 |
3.9564 | 0.19 | 2000 | 3.8941 |
3.9193 | 0.23 | 2500 | 3.8780 |
3.9185 | 0.28 | 3000 | 3.8501 |
3.8881 | 0.32 | 3500 | 3.8334 |
3.8869 | 0.37 | 4000 | 3.8211 |
3.876 | 0.42 | 4500 | 3.8057 |
3.8552 | 0.46 | 5000 | 3.7954 |
3.8198 | 0.51 | 5500 | 3.7861 |
3.8016 | 0.56 | 6000 | 3.7750 |
3.8033 | 0.6 | 6500 | 3.7651 |
3.7927 | 0.65 | 7000 | 3.7528 |
3.7978 | 0.7 | 7500 | 3.7429 |
3.7727 | 0.74 | 8000 | 3.7367 |
3.7634 | 0.79 | 8500 | 3.7275 |
3.7395 | 0.83 | 9000 | 3.7158 |
3.7432 | 0.88 | 9500 | 3.7066 |
3.7623 | 0.93 | 10000 | 3.7039 |
3.7182 | 0.97 | 10500 | 3.6904 |
3.7146 | 1.02 | 11000 | 3.6881 |
3.681 | 1.07 | 11500 | 3.6797 |
3.6745 | 1.11 | 12000 | 3.6750 |
3.6794 | 1.16 | 12500 | 3.6748 |
3.6802 | 1.21 | 13000 | 3.6696 |
3.665 | 1.25 | 13500 | 3.6609 |
3.6516 | 1.3 | 14000 | 3.6633 |
3.6577 | 1.34 | 14500 | 3.6573 |
3.6409 | 1.39 | 15000 | 3.6519 |
3.6691 | 1.44 | 15500 | 3.6490 |
3.6521 | 1.48 | 16000 | 3.6475 |
3.6435 | 1.53 | 16500 | 3.6465 |
3.6466 | 1.58 | 17000 | 3.6392 |
3.644 | 1.62 | 17500 | 3.6419 |
3.6347 | 1.67 | 18000 | 3.6347 |
3.6205 | 1.71 | 18500 | 3.6328 |
3.6451 | 1.76 | 19000 | 3.6310 |
3.6327 | 1.81 | 19500 | 3.6284 |
3.6166 | 1.85 | 20000 | 3.6267 |
3.622 | 1.9 | 20500 | 3.6212 |
3.6164 | 1.95 | 21000 | 3.6199 |
3.6178 | 1.99 | 21500 | 3.6201 |
3.5892 | 2.04 | 22000 | 3.6201 |
3.5855 | 2.09 | 22500 | 3.6221 |
3.5658 | 2.13 | 23000 | 3.6193 |
3.5916 | 2.18 | 23500 | 3.6144 |
3.5767 | 2.22 | 24000 | 3.6101 |
3.5809 | 2.27 | 24500 | 3.6115 |
3.5561 | 2.32 | 25000 | 3.6110 |
3.5831 | 2.36 | 25500 | 3.6080 |
3.5551 | 2.41 | 26000 | 3.6121 |
3.5588 | 2.46 | 26500 | 3.6072 |
3.5645 | 2.5 | 27000 | 3.6056 |
3.5804 | 2.55 | 27500 | 3.6038 |
3.5712 | 2.6 | 28000 | 3.6052 |
3.5494 | 2.64 | 28500 | 3.6014 |
3.582 | 2.69 | 29000 | 3.5995 |
3.5487 | 2.73 | 29500 | 3.6051 |
3.5709 | 2.78 | 30000 | 3.5954 |
3.5546 | 2.83 | 30500 | 3.5941 |
3.5525 | 2.87 | 31000 | 3.5952 |
3.5603 | 2.92 | 31500 | 3.5972 |
3.5572 | 2.97 | 32000 | 3.5947 |
3.5106 | 3.01 | 32500 | 3.5952 |
3.5142 | 3.06 | 33000 | 3.5937 |
3.506 | 3.11 | 33500 | 3.5965 |
3.515 | 3.15 | 34000 | 3.5932 |
3.5247 | 3.2 | 34500 | 3.5951 |
3.5384 | 3.24 | 35000 | 3.5917 |
3.5165 | 3.29 | 35500 | 3.5887 |
3.5187 | 3.34 | 36000 | 3.5866 |
3.5097 | 3.38 | 36500 | 3.5895 |
3.5136 | 3.43 | 37000 | 3.5878 |
3.5095 | 3.48 | 37500 | 3.5839 |
3.5226 | 3.52 | 38000 | 3.5859 |
3.5277 | 3.57 | 38500 | 3.5827 |
3.4959 | 3.62 | 39000 | 3.5846 |
3.5003 | 3.66 | 39500 | 3.5823 |
3.5095 | 3.71 | 40000 | 3.5820 |
3.4814 | 3.75 | 40500 | 3.5854 |
3.5173 | 3.8 | 41000 | 3.5796 |
3.4968 | 3.85 | 41500 | 3.5810 |
3.5183 | 3.89 | 42000 | 3.5783 |
3.512 | 3.94 | 42500 | 3.5784 |
3.5069 | 3.99 | 43000 | 3.5775 |
3.5014 | 4.03 | 43500 | 3.5819 |
3.4787 | 4.08 | 44000 | 3.5836 |
3.4625 | 4.12 | 44500 | 3.5788 |
3.4902 | 4.17 | 45000 | 3.5784 |
3.4927 | 4.22 | 45500 | 3.5773 |
3.4813 | 4.26 | 46000 | 3.5769 |
3.4637 | 4.31 | 46500 | 3.5761 |
3.4731 | 4.36 | 47000 | 3.5771 |
3.4856 | 4.4 | 47500 | 3.5786 |
3.4579 | 4.45 | 48000 | 3.5790 |
3.5032 | 4.5 | 48500 | 3.5738 |
3.4826 | 4.54 | 49000 | 3.5749 |
3.4709 | 4.59 | 49500 | 3.5746 |
3.4916 | 4.63 | 50000 | 3.5745 |
3.4715 | 4.68 | 50500 | 3.5706 |
3.4926 | 4.73 | 51000 | 3.5729 |
3.4974 | 4.77 | 51500 | 3.5725 |
3.4796 | 4.82 | 52000 | 3.5683 |
3.4817 | 4.87 | 52500 | 3.5707 |
3.4683 | 4.91 | 53000 | 3.5721 |
3.4986 | 4.96 | 53500 | 3.5689 |
3.4763 | 5.01 | 54000 | 3.5716 |
3.4668 | 5.05 | 54500 | 3.5700 |
3.4274 | 5.1 | 55000 | 3.5724 |
3.4499 | 5.14 | 55500 | 3.5717 |
3.4507 | 5.19 | 56000 | 3.5706 |
3.4343 | 5.24 | 56500 | 3.5697 |
3.4151 | 5.28 | 57000 | 3.5710 |
3.4469 | 5.33 | 57500 | 3.5712 |
3.458 | 5.38 | 58000 | 3.5692 |
3.4559 | 5.42 | 58500 | 3.5680 |
3.4354 | 5.47 | 59000 | 3.5683 |
3.4479 | 5.52 | 59500 | 3.5703 |
3.4627 | 5.56 | 60000 | 3.5678 |
3.4478 | 5.61 | 60500 | 3.5659 |
3.4645 | 5.65 | 61000 | 3.5675 |
3.4658 | 5.7 | 61500 | 3.5666 |
3.4657 | 5.75 | 62000 | 3.5658 |
3.4618 | 5.79 | 62500 | 3.5653 |
3.4541 | 5.84 | 63000 | 3.5653 |
3.4552 | 5.89 | 63500 | 3.5648 |
3.4679 | 5.93 | 64000 | 3.5648 |
3.4423 | 5.98 | 64500 | 3.5652 |
3.3893 | 6.03 | 65000 | 3.5646 |
3.4239 | 6.07 | 65500 | 3.5668 |
3.4329 | 6.12 | 66000 | 3.5639 |
3.4151 | 6.16 | 66500 | 3.5649 |
3.4181 | 6.21 | 67000 | 3.5682 |
3.4314 | 6.26 | 67500 | 3.5669 |
3.4245 | 6.3 | 68000 | 3.5629 |
3.421 | 6.35 | 68500 | 3.5663 |
3.4329 | 6.4 | 69000 | 3.5660 |
3.4122 | 6.44 | 69500 | 3.5651 |
3.4362 | 6.49 | 70000 | 3.5628 |
3.4497 | 6.54 | 70500 | 3.5648 |
3.431 | 6.58 | 71000 | 3.5626 |
3.432 | 6.63 | 71500 | 3.5648 |
3.4208 | 6.67 | 72000 | 3.5635 |
3.4526 | 6.72 | 72500 | 3.5645 |
3.4139 | 6.77 | 73000 | 3.5621 |
3.4212 | 6.81 | 73500 | 3.5629 |
3.4352 | 6.86 | 74000 | 3.5597 |
3.4242 | 6.91 | 74500 | 3.5597 |
3.429 | 6.95 | 75000 | 3.5619 |
3.4133 | 7.0 | 75500 | 3.5592 |
3.4086 | 7.04 | 76000 | 3.5621 |
3.4056 | 7.09 | 76500 | 3.5604 |
3.4158 | 7.14 | 77000 | 3.5629 |
3.4153 | 7.18 | 77500 | 3.5609 |
3.4155 | 7.23 | 78000 | 3.5621 |
3.4117 | 7.28 | 78500 | 3.5626 |
3.407 | 7.32 | 79000 | 3.5638 |
3.3977 | 7.37 | 79500 | 3.5604 |
3.4134 | 7.42 | 80000 | 3.5611 |
3.4403 | 7.46 | 80500 | 3.5630 |
3.4002 | 7.51 | 81000 | 3.5601 |
3.4147 | 7.55 | 81500 | 3.5577 |
3.4068 | 7.6 | 82000 | 3.5588 |
3.4165 | 7.65 | 82500 | 3.5613 |
3.409 | 7.69 | 83000 | 3.5596 |
3.4213 | 7.74 | 83500 | 3.5583 |
3.403 | 7.79 | 84000 | 3.5601 |
3.3819 | 7.83 | 84500 | 3.5580 |
3.4182 | 7.88 | 85000 | 3.5570 |
3.4099 | 7.93 | 85500 | 3.5570 |
3.3845 | 7.97 | 86000 | 3.5582 |
3.411 | 8.02 | 86500 | 3.5610 |
3.3952 | 8.06 | 87000 | 3.5588 |
3.4211 | 8.11 | 87500 | 3.5588 |
3.4171 | 8.16 | 88000 | 3.5570 |
3.3825 | 8.2 | 88500 | 3.5607 |
3.3807 | 8.25 | 89000 | 3.5579 |
3.3842 | 8.3 | 89500 | 3.5583 |
3.3809 | 8.34 | 90000 | 3.5596 |
3.4033 | 8.39 | 90500 | 3.5590 |
3.4156 | 8.44 | 91000 | 3.5577 |
3.3927 | 8.48 | 91500 | 3.5585 |
3.4041 | 8.53 | 92000 | 3.5596 |
3.4006 | 8.57 | 92500 | 3.5600 |
3.4007 | 8.62 | 93000 | 3.5578 |
3.4047 | 8.67 | 93500 | 3.5572 |
3.3904 | 8.71 | 94000 | 3.5571 |
3.3888 | 8.76 | 94500 | 3.5581 |
3.3876 | 8.81 | 95000 | 3.5572 |
3.3872 | 8.85 | 95500 | 3.5575 |
3.3753 | 8.9 | 96000 | 3.5577 |
3.3961 | 8.95 | 96500 | 3.5568 |
3.4131 | 8.99 | 97000 | 3.5579 |
3.3647 | 9.04 | 97500 | 3.5573 |
3.3792 | 9.08 | 98000 | 3.5576 |
3.3755 | 9.13 | 98500 | 3.5575 |
3.3981 | 9.18 | 99000 | 3.5573 |
3.3914 | 9.22 | 99500 | 3.5573 |
3.4136 | 9.27 | 100000 | 3.5575 |
Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 261
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.