|
--- |
|
base_model: microsoft/phi-2 |
|
datasets: |
|
- teknium/OpenHermes-2.5 |
|
- ContextualAI/ultrafeedback_clair_32k |
|
library_name: transformers |
|
license: mit |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# phi-2-instruct-apo |
|
|
|
This is a finetuned version of Microsoft's 2.7B parameter [phi-2](https://huggingface.co./microsoft/phi-2) transfromer model that has underwent a post-training process that incorporates both **supervised fine-tuning** and **anchored preference optimization** for instruction following. I used the [trl](https://huggingface.co./docs/trl/en/index) library and a single **A100 40GB** GPU during both the SFT and APO steps. |
|
|
|
- Supervised Fine-Tuning |
|
- SFT Model: [phi-2-sft](https://huggingface.co./rasyosef/phi-2-sft-openhermes-128k-v2) |
|
- Used 128,000 instruction, response pairs from the [teknium/OpenHermes-2.5](https://huggingface.co./datasets/teknium/OpenHermes-2.5) dataset |
|
|
|
- Anchored Preference Optimization (APO) |
|
- LoRA Adapter: [phi-2-apo](https://huggingface.co./rasyosef/phi-2-apo) |
|
- Used 10,000 preference pairs from the [ContextualAI/ultrafeedback_clair_32k](https://huggingface.co./datasets/ContextualAI/ultrafeedback_clair_32k) dataset |
|
|
|
## How to use |
|
### Chat Format |
|
|
|
Given the nature of the training data, the phi-2 instruct model is best suited for prompts using the chat format as follows. |
|
You can provide the prompt as a question with a generic template as follows: |
|
```markdown |
|
<|im_start|>system |
|
You are a helpful assistant.<|im_end|> |
|
<|im_start|>user |
|
Question?<|im_end|> |
|
<|im_start|>assistant |
|
``` |
|
|
|
For example: |
|
```markdown |
|
<|im_start|>system |
|
You are a helpful assistant.<|im_end|> |
|
<|im_start|>user |
|
How to explain Internet for a medieval knight?<|im_end|> |
|
<|im_start|>assistant |
|
``` |
|
where the model generates the text after `<|im_start|>assistant` . |
|
|
|
### Sample inference code |
|
|
|
This code snippets show how to get quickly started with running the model on a GPU: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
torch.random.manual_seed(0) |
|
|
|
model_id = "rasyosef/phi-2-instruct-apo" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="cuda", |
|
torch_dtype="auto" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful AI assistant."}, |
|
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, |
|
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, |
|
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, |
|
] |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
generation_args = { |
|
"max_new_tokens": 256, |
|
"return_full_text": False, |
|
"temperature": 0.0, |
|
"do_sample": False, |
|
} |
|
|
|
output = pipe(messages, **generation_args) |
|
print(output[0]['generated_text']) |
|
``` |
|
|
|
Note: If you want to use flash attention, call _AutoModelForCausalLM.from_pretrained()_ with _attn_implementation="flash_attention_2"_ |
|
|