nvidia-segformer-b0-finetuned-ade-512-512-finetuned-ISIC17
This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1948
- Mean Iou: 0.8064
- Mean Accuracy: 0.8726
- Overall Accuracy: 0.9381
- Per Category Iou: [0.6841604127643356, 0.9285439643646547]
- Per Category Accuracy: [0.7721651141608432, 0.9729809595315688]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
0.481 | 0.16 | 10 | 0.4235 | 0.6191 | 0.6970 | 0.8761 | [0.3719409076673884, 0.8662862424406493] | [0.42270204900152314, 0.9713331864930521] |
0.4147 | 0.32 | 20 | 0.3894 | 0.7067 | 0.8502 | 0.8853 | [0.5464942438498753, 0.8668431573745645] | [0.7965579529885418, 0.9038859083170013] |
0.356 | 0.48 | 30 | 0.3148 | 0.7467 | 0.8513 | 0.9107 | [0.5963581593534901, 0.897077797385972] | [0.7603709174964982, 0.9422313184595918] |
0.3039 | 0.63 | 40 | 0.3024 | 0.7620 | 0.8671 | 0.9162 | [0.6211722830632663, 0.9028139512386881] | [0.7918407335685692, 0.9422883932404167] |
0.2545 | 0.79 | 50 | 0.2849 | 0.7766 | 0.8898 | 0.9201 | [0.6468577863419183, 0.9063792530493855] | [0.8432862096150755, 0.9362151542385662] |
0.2635 | 0.95 | 60 | 0.2504 | 0.7828 | 0.8644 | 0.9279 | [0.6487213857926865, 0.9168129696986418] | [0.7671470887645524, 0.9616549114054705] |
0.2175 | 1.11 | 70 | 0.2497 | 0.7849 | 0.8682 | 0.9283 | [0.6526705030304356, 0.9171225024239068] | [0.7762677096648272, 0.9602225755678137] |
0.2025 | 1.27 | 80 | 0.2400 | 0.7840 | 0.8632 | 0.9288 | [0.6501844204669202, 0.9178944798865282] | [0.7627291445016801, 0.9636411137781736] |
0.2035 | 1.43 | 90 | 0.2288 | 0.7931 | 0.8749 | 0.9313 | [0.6657367286733036, 0.9203778068784213] | [0.7885027822639286, 0.9612655167036179] |
0.2488 | 1.59 | 100 | 0.2110 | 0.7978 | 0.8719 | 0.9341 | [0.6717638717220313, 0.923859975121704] | [0.7766611302038285, 0.9672003292652145] |
0.1954 | 1.75 | 110 | 0.2067 | 0.7962 | 0.8597 | 0.9354 | [0.666599427783381, 0.9258672754383861] | [0.7436428904928473, 0.9757231213956472] |
0.1806 | 1.9 | 120 | 0.2047 | 0.7926 | 0.8525 | 0.9349 | [0.6596059897565958, 0.925563006736469] | [0.726197674685608, 0.9787940661520825] |
0.161 | 2.06 | 130 | 0.2047 | 0.7903 | 0.8505 | 0.9342 | [0.6558737849234609, 0.9247714617107691] | [0.7223974159771602, 0.9786951901233297] |
0.1736 | 2.22 | 140 | 0.2023 | 0.7948 | 0.8588 | 0.9349 | [0.6643652721485811, 0.9252950591002775] | [0.742124317828686, 0.9754152391272543] |
0.1947 | 2.38 | 150 | 0.2077 | 0.7985 | 0.8656 | 0.9355 | [0.6712414223331253, 0.9257326708494226] | [0.7585178608332249, 0.9726888331181641] |
0.1464 | 2.54 | 160 | 0.1960 | 0.8030 | 0.8680 | 0.9373 | [0.678274892507806, 0.9276935390097538] | [0.7620104248788739, 0.9740685958478499] |
0.1644 | 2.7 | 170 | 0.1964 | 0.8064 | 0.8751 | 0.9377 | [0.6847175060674714, 0.9279857318627613] | [0.7791196258677832, 0.9710404169835255] |
0.1803 | 2.86 | 180 | 0.1948 | 0.8064 | 0.8726 | 0.9381 | [0.6841604127643356, 0.9285439643646547] | [0.7721651141608432, 0.9729809595315688] |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.0+cu116
- Datasets 2.7.0
- Tokenizers 0.12.1
- Downloads last month
- 5