Edit model card

phi-3-mini-LoRA

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8384

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.4537 0.2052 100 1.2281
1.0408 0.4105 200 0.9405
0.915 0.6157 300 0.9088
0.9159 0.8209 400 0.8933
0.8925 1.0262 500 0.8809
0.8837 1.2314 600 0.8712
0.8753 1.4366 700 0.8604
0.8701 1.6419 800 0.8537
0.8755 1.8471 900 0.8498
0.8603 2.0523 1000 0.8460
0.8669 2.2576 1100 0.8434
0.8558 2.4628 1200 0.8410
0.8482 2.6680 1300 0.8395
0.844 2.8733 1400 0.8384

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for rahulavaghan/phi-3-mini-LoRA

Adapter
(287)
this model