Model Card for InternViT-300M-448px

Image Description

[πŸ†• Blog] [πŸ“œ InternVL 1.0 Paper] [πŸ“œ InternVL 1.5 Report] [πŸ—¨οΈ Chat Demo]

[πŸ€— HF Demo] [πŸš€ Quick Start] [🌐 Community-hosted API] [πŸ“– 中文解读]

This update primarily focuses on enhancing the efficiency of the vision foundation model. We developed InternViT-300M-448px by distilling knowledge from the robust vision foundation model, InternViT-6B-448px-V1-5. Like its predecessor, InternViT-300M-448px features a dynamic input resolution of 448Γ—448, with a basic tile size of 448Γ—448. During training, it allows for 1 to 12 tiles, and expands to 1 to 40 tiles during testing. Additionally, it inherits the powerful robustness, OCR capability, and high-resolution processing capacity from InternViT-6B-448px-V1-5.

Model Details

  • Model Type: vision foundation model, feature backbone
  • Model Stats:
    • Params (M): 304
    • Image size: 448 x 448, training with 1 - 12 tiles
  • Pretrain Dataset: LAION-en, LAION-zh, COYO, GRIT, COCO, TextCaps, Objects365, OpenImages, All-Seeing, Wukong-OCR, LaionCOCO-OCR, and other OCR-related datasets. To enhance the OCR capability of the model, we have incorporated additional OCR data alongside the general caption datasets. Specifically, we utilized PaddleOCR to perform Chinese OCR on images from Wukong and English OCR on images from LAION-COCO.

Released Models

Vision Foundation model

Model Date Download Note
InternViT-6B-448px-V1-5 2024.04.20 πŸ€— HF link support dynamic resolution, super strong OCR (πŸ”₯new)
InternViT-6B-448px-V1-2 2024.02.11 πŸ€— HF link 448 resolution
InternViT-6B-448px-V1-0 2024.01.30 πŸ€— HF link 448 resolution
InternViT-6B-224px 2023.12.22 πŸ€— HF link vision foundation model
InternVL-14B-224px 2023.12.22 πŸ€— HF link vision-language foundation model

Multimodal Large Language Model (MLLM)

Model Date Download Note
InternVL-Chat-V1-5 2024.04.18 πŸ€— HF link support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (πŸ”₯new)
InternVL-Chat-V1-2-Plus 2024.02.21 πŸ€— HF link more SFT data and stronger
InternVL-Chat-V1-2 2024.02.11 πŸ€— HF link scaling up LLM to 34B
InternVL-Chat-V1-1 2024.01.24 πŸ€— HF link support Chinese and stronger OCR

Model Usage (Image Embeddings)

import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor

model = AutoModel.from_pretrained(
    'OpenGVLab/InternViT-300M-448px',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image = Image.open('./examples/image1.jpg').convert('RGB')

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-300M-448px')

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

outputs = model(pixel_values)

Citation

If you find this project useful in your research, please consider citing:

@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}

Acknowledgement

InternVL is built with reference to the code of the following projects: OpenAI CLIP, Open CLIP, CLIP Benchmark, EVA, InternImage, ViT-Adapter, MMSegmentation, Transformers, DINOv2, BLIP-2, Qwen-VL, and LLaVA-1.5. Thanks for their awesome work!

Downloads last month
13
Safetensors
Model size
304M params
Tensor type
BF16
Β·
Inference API
Inference API (serverless) does not yet support model repos that contain custom code.

Datasets used to train radna/Triton-InternViT-300M-448px