|
--- |
|
license: apache-2.0 |
|
language: |
|
- de |
|
base_model: |
|
- dbmdz/bert-base-german-uncased |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
## Social Media Style Classifier for Climate Change Text (German) |
|
|
|
|
|
This model is a fine-tuned bert-base-uncased on a binary classification task to determine whether a German text about Climate Change is written in a social media style. |
|
|
|
Social media texts were gathered from [GerCCT](https://github.com/RobinSchaefer/GerCCT) and [r/Klimawandel](https://www.reddit.com/r/Klimawandel/). |
|
|
|
Non-social media texts were gathered by tokenizing sentences from 15 Wikipedia articles: |
|
1. [Klimawandel](https://de.wikipedia.org/wiki/Klimawandel), |
|
2. [Globale Erwärmung](https://de.wikipedia.org/wiki/Globale_Erw%C3%A4rmung), |
|
3. [Forschungsgeschichte des Klimawandels](https://de.wikipedia.org/wiki/Forschungsgeschichte_des_Klimawandels), |
|
4. [Klimahysterie](https://de.wikipedia.org/wiki/Klimahysterie), |
|
5. [Klimawandelleugnung](https://de.wikipedia.org/wiki/Klimawandelleugnung), |
|
6. [Folgen der globalen Erwärmung in der Arktis](https://de.wikipedia.org/wiki/Folgen_der_globalen_Erw%C3%A4rmung_in_der_Arktis) |
|
7. [Folgen der globalen Erwärmung](https://de.wikipedia.org/wiki/Folgen_der_globalen_Erw%C3%A4rmung) |
|
8. [Klimamodell](https://de.wikipedia.org/wiki/Klimamodell) |
|
9. [Anpassung an die globale Erwärmung](https://de.wikipedia.org/wiki/Anpassung_an_die_globale_Erw%C3%A4rmung) |
|
10. [Kontroverse um die globale Erwärmung](https://de.wikipedia.org/wiki/Kontroverse_um_die_globale_Erw%C3%A4rmung) |
|
11. [UN-Klimakonferenz in Dubai 2023](https://de.wikipedia.org/wiki/UN-Klimakonferenz_in_Dubai_2023) |
|
12. [Umweltbewegung](https://de.wikipedia.org/wiki/Umweltbewegung#Klimaschutz) |
|
13. [Treibhausgas](https://de.wikipedia.org/wiki/Treibhausgas) |
|
14. [Treibhauseffekt](https://de.wikipedia.org/wiki/Treibhauseffekt) |
|
15. [Klimaschutz](https://de.wikipedia.org/wiki/Klimaschutz) |
|
|
|
The dataset contained about 8K instances, with a 50/50 distribution between the two classes. It was shuffled with a random seed of 42 and split into 80/20 for training/testing. |
|
The V100-16GB GPU was used for training three epochs with a batch size of 8. Other hyperparameters were default values from the HuggingFace Trainer. |
|
|
|
The model was trained in order to evaluate a text style transfer task, converting formal-language texts to tweets. |
|
|
|
### How to use |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline |
|
|
|
model_name = "rabuahmad/cc-tweets-classifier-de" |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=512) |
|
|
|
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer, truncation=True, max_length=512) |
|
|
|
text = "Gestern war ein schöner Tag!" |
|
|
|
result = classifier(text) |
|
|
|
``` |
|
Label 1 indicates that the text is predicted to be a tweet. |
|
|
|
### Evaluation |
|
|
|
Evaluation results on the test set: |
|
|
|
| Metric |Score | |
|
|----------|-----------| |
|
| Accuracy | 0.96494 | |
|
| Precision| 0.97552 | |
|
| Recall | 0.95564 | |
|
| F1 | 0.96547 | |