Post
3306
Let's go! We are releasing SmolVLM, a smol 2B VLM built for on-device inference that outperforms all models at similar GPU RAM usage and tokens throughputs.
- SmolVLM generates tokens 7.5 to 16 times faster than Qwen2-VL! ๐คฏ
- Other models at this size crash a laptop, but SmolVLM comfortably generates 17 tokens/sec on a macbook! ๐
- SmolVLM can be fine-tuned on a Google collab! Or process millions of documents with a consumer GPU!
- SmolVLM even outperforms larger models in video benchmarks, despite not even being trained on videos!
Check out more!
Demo: HuggingFaceTB/SmolVLM
Blog: https://huggingface.co./blog/smolvlm
Model: HuggingFaceTB/SmolVLM-Instruct
Fine-tuning script: https://github.com/huggingface/smollm/blob/main/finetuning/Smol_VLM_FT.ipynb
- SmolVLM generates tokens 7.5 to 16 times faster than Qwen2-VL! ๐คฏ
- Other models at this size crash a laptop, but SmolVLM comfortably generates 17 tokens/sec on a macbook! ๐
- SmolVLM can be fine-tuned on a Google collab! Or process millions of documents with a consumer GPU!
- SmolVLM even outperforms larger models in video benchmarks, despite not even being trained on videos!
Check out more!
Demo: HuggingFaceTB/SmolVLM
Blog: https://huggingface.co./blog/smolvlm
Model: HuggingFaceTB/SmolVLM-Instruct
Fine-tuning script: https://github.com/huggingface/smollm/blob/main/finetuning/Smol_VLM_FT.ipynb