qunfengd's picture
Upload tokenizer
10ee51f verified
metadata
license: mit
tags:
  - generated_from_keras_callback
base_model: facebook/esm2_t12_35M_UR50D
model-index:
  - name: esm2_t12_35M_UR50D-finetuned-AMP_Classification_HighAccuracy
    results: []

esm2_t12_35M_UR50D-finetuned-AMP_Classification_HighAccuracy

This model is a fine-tuned version of facebook/esm2_t12_35M_UR50D on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0059
  • Train Accuracy: 0.9981
  • Validation Loss: 0.0985
  • Validation Accuracy: 0.9769
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.1093 0.9602 0.0862 0.9702 0
0.0626 0.9763 0.0717 0.9723 1
0.0372 0.9858 0.0976 0.9713 2
0.0204 0.9927 0.0913 0.9771 3
0.0121 0.9964 0.0953 0.9769 4
0.0109 0.9963 0.1082 0.9752 5
0.0085 0.9970 0.1057 0.9728 6
0.0063 0.9981 0.1145 0.9736 7
0.0051 0.9984 0.1181 0.9755 8
0.0059 0.9981 0.0985 0.9769 9

Framework versions

  • Transformers 4.40.1
  • TensorFlow 2.15.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1