Segment-Anything-Model: Optimized for Mobile Deployment
High-quality segmentation mask generation around any object in an image with simple input prompt
Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.
This model is an implementation of Segment-Anything-Model found here.
This repository provides scripts to run Segment-Anything-Model on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Semantic segmentation
- Model Stats:
- Model checkpoint: vit_l
- Input resolution: 720p (720x1280)
- Number of parameters (SAMDecoder): 5.11M
- Model size (SAMDecoder): 19.6 MB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
SAMDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.442 ms | 0 - 33 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 7.305 ms | 4 - 21 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 10.954 ms | 0 - 61 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 5.197 ms | 0 - 39 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 5.138 ms | 40 - 83 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 8.273 ms | 6 - 58 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.189 ms | 0 - 38 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.836 ms | 4 - 45 MB | FP16 | NPU | Use Export Script |
SAMDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 8.097 ms | 6 - 52 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMDecoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.44 ms | 0 - 33 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.839 ms | 4 - 7 MB | FP16 | NPU | Use Export Script |
SAMDecoder | SA7255P ADP | SA7255P | TFLITE | 53.012 ms | 0 - 33 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | SA7255P ADP | SA7255P | QNN | 49.841 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMDecoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 7.45 ms | 0 - 32 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.933 ms | 4 - 6 MB | FP16 | NPU | Use Export Script |
SAMDecoder | SA8295P ADP | SA8295P | TFLITE | 9.944 ms | 0 - 36 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | SA8295P ADP | SA8295P | QNN | 8.969 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
SAMDecoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 7.451 ms | 0 - 34 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.992 ms | 4 - 6 MB | FP16 | NPU | Use Export Script |
SAMDecoder | SA8775P ADP | SA8775P | TFLITE | 10.463 ms | 0 - 33 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | SA8775P ADP | SA8775P | QNN | 9.711 ms | 2 - 12 MB | FP16 | NPU | Use Export Script |
SAMDecoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.499 ms | 0 - 36 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMDecoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 8.282 ms | 4 - 43 MB | FP16 | NPU | Use Export Script |
SAMDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.345 ms | 4 - 4 MB | FP16 | NPU | Use Export Script |
SAMDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 14.961 ms | 11 - 11 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart1 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 208.707 ms | 12 - 79 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 203.4 ms | 12 - 104 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMEncoderPart1 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 167.127 ms | 25 - 182 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart1 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 147.832 ms | 11 - 664 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 144.807 ms | 12 - 651 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMEncoderPart1 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 122.784 ms | 23 - 696 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart1 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 144.47 ms | 10 - 662 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 143.144 ms | 12 - 660 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart1 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 98.548 ms | 23 - 668 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart1 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 208.97 ms | 12 - 71 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 176.897 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart1 | SA7255P ADP | SA7255P | TFLITE | 1172.71 ms | 0 - 644 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | SA7255P ADP | SA7255P | QNN | 1103.665 ms | 5 - 14 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart1 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 206.562 ms | 12 - 67 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | SA8255 (Proxy) | SA8255P Proxy | QNN | 179.137 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart1 | SA8295P ADP | SA8295P | TFLITE | 242.758 ms | 12 - 640 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | SA8295P ADP | SA8295P | QNN | 207.245 ms | 0 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart1 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 206.266 ms | 12 - 73 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | SA8650 (Proxy) | SA8650P Proxy | QNN | 175.273 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart1 | SA8775P ADP | SA8775P | TFLITE | 249.944 ms | 12 - 656 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | SA8775P ADP | SA8775P | QNN | 211.755 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart1 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 231.125 ms | 12 - 993 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart1 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 225.612 ms | 12 - 965 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart1 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 170.905 ms | 12 - 12 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart1 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 181.653 ms | 38 - 38 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 663.885 ms | 12 - 110 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 848.959 ms | 12 - 111 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMEncoderPart2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 752.707 ms | 12 - 199 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 538.304 ms | 12 - 1133 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 474.493 ms | 11 - 1140 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 581.145 ms | 12 - 1112 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 437.687 ms | 36 - 1409 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart2 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 676.949 ms | 12 - 107 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart2 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 741.824 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart2 | SA7255P ADP | SA7255P | QNN | 1879.956 ms | 3 - 13 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart2 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 673.933 ms | 12 - 103 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart2 | SA8255 (Proxy) | SA8255P Proxy | QNN | 740.075 ms | 12 - 14 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart2 | SA8295P ADP | SA8295P | TFLITE | 707.086 ms | 12 - 1174 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart2 | SA8295P ADP | SA8295P | QNN | 783.918 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart2 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 658.949 ms | 12 - 119 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart2 | SA8650 (Proxy) | SA8650P Proxy | QNN | 739.207 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart2 | SA8775P ADP | SA8775P | TFLITE | 702.232 ms | 0 - 1144 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart2 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 641.303 ms | 12 - 12 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart2 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 744.868 ms | 52 - 52 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart3 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 672.567 ms | 12 - 110 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart3 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 843.337 ms | 12 - 107 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMEncoderPart3 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 745.502 ms | 24 - 207 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart3 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 534.698 ms | 5 - 1125 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart3 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 471.028 ms | 11 - 1141 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart3 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 575.953 ms | 12 - 1111 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart3 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 458.142 ms | 36 - 1408 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart3 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 677.866 ms | 12 - 111 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart3 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 733.613 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart3 | SA7255P ADP | SA7255P | QNN | 1878.822 ms | 4 - 14 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart3 | SA8255 (Proxy) | SA8255P Proxy | QNN | 738.856 ms | 13 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart3 | SA8295P ADP | SA8295P | TFLITE | 707.285 ms | 12 - 1174 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart3 | SA8295P ADP | SA8295P | QNN | 783.748 ms | 1 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart3 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 662.19 ms | 12 - 106 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart3 | SA8650 (Proxy) | SA8650P Proxy | QNN | 731.685 ms | 12 - 14 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart3 | SA8775P ADP | SA8775P | TFLITE | 700.772 ms | 0 - 1147 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart3 | SA8775P ADP | SA8775P | QNN | 741.409 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart3 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 635.362 ms | 12 - 12 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart3 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 745.734 ms | 51 - 51 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 657.654 ms | 12 - 109 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 856.098 ms | 12 - 114 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMEncoderPart4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 743.085 ms | 19 - 212 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 604.577 ms | 24 - 1422 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 475.414 ms | 11 - 1141 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 574.057 ms | 12 - 1112 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 462.476 ms | 36 - 1408 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart4 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 656.285 ms | 12 - 111 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart4 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 721.087 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart4 | SA7255P ADP | SA7255P | QNN | 1879.639 ms | 4 - 13 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart4 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 678.333 ms | 12 - 103 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart4 | SA8255 (Proxy) | SA8255P Proxy | QNN | 733.002 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart4 | SA8295P ADP | SA8295P | TFLITE | 705.127 ms | 12 - 1172 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart4 | SA8295P ADP | SA8295P | QNN | 781.449 ms | 0 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart4 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 663.855 ms | 12 - 110 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart4 | SA8650 (Proxy) | SA8650P Proxy | QNN | 730.597 ms | 12 - 14 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart4 | SA8775P ADP | SA8775P | TFLITE | 704.507 ms | 0 - 1145 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart4 | SA8775P ADP | SA8775P | QNN | 740.223 ms | 2 - 12 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart4 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 633.268 ms | 12 - 12 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart4 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 739.909 ms | 51 - 51 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 670.811 ms | 12 - 104 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 840.684 ms | 12 - 118 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMEncoderPart5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 745.91 ms | 12 - 210 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 648.946 ms | 12 - 1109 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMEncoderPart5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 430.043 ms | 11 - 1143 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 575.631 ms | 12 - 1112 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 433.917 ms | 36 - 1404 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart5 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 648.794 ms | 12 - 95 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart5 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 727.832 ms | 12 - 16 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart5 | SA7255P ADP | SA7255P | QNN | 1883.878 ms | 12 - 21 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart5 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 688.453 ms | 12 - 112 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart5 | SA8255 (Proxy) | SA8255P Proxy | QNN | 745.534 ms | 12 - 14 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart5 | SA8295P ADP | SA8295P | TFLITE | 707.293 ms | 12 - 1176 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart5 | SA8295P ADP | SA8295P | QNN | 784.759 ms | 0 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart5 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 648.646 ms | 12 - 118 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart5 | SA8650 (Proxy) | SA8650P Proxy | QNN | 735.432 ms | 12 - 14 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart5 | SA8775P ADP | SA8775P | TFLITE | 707.889 ms | 0 - 1146 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart5 | SA8775P ADP | SA8775P | QNN | 740.576 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart5 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 644.302 ms | 12 - 12 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart5 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 734.599 ms | 51 - 51 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart6 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 679.861 ms | 4 - 94 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart6 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 844.027 ms | 12 - 107 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMEncoderPart6 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 744.683 ms | 12 - 198 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart6 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 672.024 ms | 12 - 1115 MB | FP16 | NPU | Segment-Anything-Model.so |
SAMEncoderPart6 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 613.484 ms | 20 - 1419 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart6 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 429.205 ms | 12 - 1141 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart6 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 577.174 ms | 12 - 1113 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart6 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 465.664 ms | 36 - 1412 MB | FP16 | NPU | Segment-Anything-Model.onnx |
SAMEncoderPart6 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 647.378 ms | 12 - 109 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart6 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 731.1 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart6 | SA7255P ADP | SA7255P | QNN | 1877.714 ms | 2 - 10 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart6 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 661.485 ms | 12 - 113 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart6 | SA8255 (Proxy) | SA8255P Proxy | QNN | 738.693 ms | 12 - 14 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart6 | SA8295P ADP | SA8295P | TFLITE | 706.823 ms | 12 - 1176 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart6 | SA8295P ADP | SA8295P | QNN | 782.241 ms | 0 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart6 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 622.148 ms | 14 - 113 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart6 | SA8650 (Proxy) | SA8650P Proxy | QNN | 729.56 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart6 | SA8775P ADP | SA8775P | TFLITE | 704.738 ms | 0 - 1144 MB | FP16 | NPU | Segment-Anything-Model.tflite |
SAMEncoderPart6 | SA8775P ADP | SA8775P | QNN | 741.461 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart6 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 636.013 ms | 12 - 12 MB | FP16 | NPU | Use Export Script |
SAMEncoderPart6 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 723.315 ms | 53 - 53 MB | FP16 | NPU | Segment-Anything-Model.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[sam]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.sam.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.sam.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.sam.export
Profiling Results
------------------------------------------------------------
SAMDecoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 7.4
Estimated peak memory usage (MB): [0, 33]
Total # Ops : 845
Compute Unit(s) : NPU (845 ops)
------------------------------------------------------------
SAMEncoderPart1
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 208.7
Estimated peak memory usage (MB): [12, 79]
Total # Ops : 584
Compute Unit(s) : NPU (584 ops)
------------------------------------------------------------
SAMEncoderPart2
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 663.9
Estimated peak memory usage (MB): [12, 110]
Total # Ops : 572
Compute Unit(s) : NPU (572 ops)
------------------------------------------------------------
SAMEncoderPart3
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 672.6
Estimated peak memory usage (MB): [12, 110]
Total # Ops : 572
Compute Unit(s) : NPU (572 ops)
------------------------------------------------------------
SAMEncoderPart4
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 657.7
Estimated peak memory usage (MB): [12, 109]
Total # Ops : 572
Compute Unit(s) : NPU (572 ops)
------------------------------------------------------------
SAMEncoderPart5
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 670.8
Estimated peak memory usage (MB): [12, 104]
Total # Ops : 572
Compute Unit(s) : NPU (572 ops)
------------------------------------------------------------
SAMEncoderPart6
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 679.9
Estimated peak memory usage (MB): [4, 94]
Total # Ops : 572
Compute Unit(s) : NPU (572 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.sam import Model
# Load the model
model = Model.from_pretrained()
decoder_model = model.decoder
encoder_splits[0]_model = model.encoder_splits[0]
encoder_splits[1]_model = model.encoder_splits[1]
encoder_splits[2]_model = model.encoder_splits[2]
encoder_splits[3]_model = model.encoder_splits[3]
encoder_splits[4]_model = model.encoder_splits[4]
encoder_splits[5]_model = model.encoder_splits[5]
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
decoder_input_shape = decoder_model.get_input_spec()
decoder_sample_inputs = decoder_model.sample_inputs()
traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()])
# Compile model on a specific device
decoder_compile_job = hub.submit_compile_job(
model=traced_decoder_model ,
device=device,
input_specs=decoder_model.get_input_spec(),
)
# Get target model to run on-device
decoder_target_model = decoder_compile_job.get_target_model()
# Trace model
encoder_splits[0]_input_shape = encoder_splits[0]_model.get_input_spec()
encoder_splits[0]_sample_inputs = encoder_splits[0]_model.sample_inputs()
traced_encoder_splits[0]_model = torch.jit.trace(encoder_splits[0]_model, [torch.tensor(data[0]) for _, data in encoder_splits[0]_sample_inputs.items()])
# Compile model on a specific device
encoder_splits[0]_compile_job = hub.submit_compile_job(
model=traced_encoder_splits[0]_model ,
device=device,
input_specs=encoder_splits[0]_model.get_input_spec(),
)
# Get target model to run on-device
encoder_splits[0]_target_model = encoder_splits[0]_compile_job.get_target_model()
# Trace model
encoder_splits[1]_input_shape = encoder_splits[1]_model.get_input_spec()
encoder_splits[1]_sample_inputs = encoder_splits[1]_model.sample_inputs()
traced_encoder_splits[1]_model = torch.jit.trace(encoder_splits[1]_model, [torch.tensor(data[0]) for _, data in encoder_splits[1]_sample_inputs.items()])
# Compile model on a specific device
encoder_splits[1]_compile_job = hub.submit_compile_job(
model=traced_encoder_splits[1]_model ,
device=device,
input_specs=encoder_splits[1]_model.get_input_spec(),
)
# Get target model to run on-device
encoder_splits[1]_target_model = encoder_splits[1]_compile_job.get_target_model()
# Trace model
encoder_splits[2]_input_shape = encoder_splits[2]_model.get_input_spec()
encoder_splits[2]_sample_inputs = encoder_splits[2]_model.sample_inputs()
traced_encoder_splits[2]_model = torch.jit.trace(encoder_splits[2]_model, [torch.tensor(data[0]) for _, data in encoder_splits[2]_sample_inputs.items()])
# Compile model on a specific device
encoder_splits[2]_compile_job = hub.submit_compile_job(
model=traced_encoder_splits[2]_model ,
device=device,
input_specs=encoder_splits[2]_model.get_input_spec(),
)
# Get target model to run on-device
encoder_splits[2]_target_model = encoder_splits[2]_compile_job.get_target_model()
# Trace model
encoder_splits[3]_input_shape = encoder_splits[3]_model.get_input_spec()
encoder_splits[3]_sample_inputs = encoder_splits[3]_model.sample_inputs()
traced_encoder_splits[3]_model = torch.jit.trace(encoder_splits[3]_model, [torch.tensor(data[0]) for _, data in encoder_splits[3]_sample_inputs.items()])
# Compile model on a specific device
encoder_splits[3]_compile_job = hub.submit_compile_job(
model=traced_encoder_splits[3]_model ,
device=device,
input_specs=encoder_splits[3]_model.get_input_spec(),
)
# Get target model to run on-device
encoder_splits[3]_target_model = encoder_splits[3]_compile_job.get_target_model()
# Trace model
encoder_splits[4]_input_shape = encoder_splits[4]_model.get_input_spec()
encoder_splits[4]_sample_inputs = encoder_splits[4]_model.sample_inputs()
traced_encoder_splits[4]_model = torch.jit.trace(encoder_splits[4]_model, [torch.tensor(data[0]) for _, data in encoder_splits[4]_sample_inputs.items()])
# Compile model on a specific device
encoder_splits[4]_compile_job = hub.submit_compile_job(
model=traced_encoder_splits[4]_model ,
device=device,
input_specs=encoder_splits[4]_model.get_input_spec(),
)
# Get target model to run on-device
encoder_splits[4]_target_model = encoder_splits[4]_compile_job.get_target_model()
# Trace model
encoder_splits[5]_input_shape = encoder_splits[5]_model.get_input_spec()
encoder_splits[5]_sample_inputs = encoder_splits[5]_model.sample_inputs()
traced_encoder_splits[5]_model = torch.jit.trace(encoder_splits[5]_model, [torch.tensor(data[0]) for _, data in encoder_splits[5]_sample_inputs.items()])
# Compile model on a specific device
encoder_splits[5]_compile_job = hub.submit_compile_job(
model=traced_encoder_splits[5]_model ,
device=device,
input_specs=encoder_splits[5]_model.get_input_spec(),
)
# Get target model to run on-device
encoder_splits[5]_target_model = encoder_splits[5]_compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
decoder_profile_job = hub.submit_profile_job(
model=decoder_target_model,
device=device,
)
encoder_splits[0]_profile_job = hub.submit_profile_job(
model=encoder_splits[0]_target_model,
device=device,
)
encoder_splits[1]_profile_job = hub.submit_profile_job(
model=encoder_splits[1]_target_model,
device=device,
)
encoder_splits[2]_profile_job = hub.submit_profile_job(
model=encoder_splits[2]_target_model,
device=device,
)
encoder_splits[3]_profile_job = hub.submit_profile_job(
model=encoder_splits[3]_target_model,
device=device,
)
encoder_splits[4]_profile_job = hub.submit_profile_job(
model=encoder_splits[4]_target_model,
device=device,
)
encoder_splits[5]_profile_job = hub.submit_profile_job(
model=encoder_splits[5]_target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
decoder_input_data = decoder_model.sample_inputs()
decoder_inference_job = hub.submit_inference_job(
model=decoder_target_model,
device=device,
inputs=decoder_input_data,
)
decoder_inference_job.download_output_data()
encoder_splits[0]_input_data = encoder_splits[0]_model.sample_inputs()
encoder_splits[0]_inference_job = hub.submit_inference_job(
model=encoder_splits[0]_target_model,
device=device,
inputs=encoder_splits[0]_input_data,
)
encoder_splits[0]_inference_job.download_output_data()
encoder_splits[1]_input_data = encoder_splits[1]_model.sample_inputs()
encoder_splits[1]_inference_job = hub.submit_inference_job(
model=encoder_splits[1]_target_model,
device=device,
inputs=encoder_splits[1]_input_data,
)
encoder_splits[1]_inference_job.download_output_data()
encoder_splits[2]_input_data = encoder_splits[2]_model.sample_inputs()
encoder_splits[2]_inference_job = hub.submit_inference_job(
model=encoder_splits[2]_target_model,
device=device,
inputs=encoder_splits[2]_input_data,
)
encoder_splits[2]_inference_job.download_output_data()
encoder_splits[3]_input_data = encoder_splits[3]_model.sample_inputs()
encoder_splits[3]_inference_job = hub.submit_inference_job(
model=encoder_splits[3]_target_model,
device=device,
inputs=encoder_splits[3]_input_data,
)
encoder_splits[3]_inference_job.download_output_data()
encoder_splits[4]_input_data = encoder_splits[4]_model.sample_inputs()
encoder_splits[4]_inference_job = hub.submit_inference_job(
model=encoder_splits[4]_target_model,
device=device,
inputs=encoder_splits[4]_input_data,
)
encoder_splits[4]_inference_job.download_output_data()
encoder_splits[5]_input_data = encoder_splits[5]_model.sample_inputs()
encoder_splits[5]_inference_job = hub.submit_inference_job(
model=encoder_splits[5]_target_model,
device=device,
inputs=encoder_splits[5]_input_data,
)
encoder_splits[5]_inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.sam.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.sam.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Segment-Anything-Model's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Segment-Anything-Model can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.