WhisperForSpokenNER
This model is a fine-tuned version of openai/whisper-small on the facebook/voxpopuli de+es+fr+nl dataset. It achieves the following results on the evaluation set:
- Loss: 75.5138
- F1 Score: 0.6260
- Label F1: 0.8282
- Wer: 0.1170
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Label F1 | Wer |
---|---|---|---|---|---|---|
294.2045 | 0.09 | 200 | 219.4521 | 0.3694 | 0.6423 | 0.1170 |
172.5491 | 0.18 | 400 | 158.4206 | 0.5112 | 0.7076 | 0.1170 |
152.1994 | 0.27 | 600 | 148.5779 | 0.5501 | 0.7391 | 0.1170 |
140.706 | 0.36 | 800 | 151.8108 | 0.5413 | 0.7324 | 0.1170 |
125.5897 | 0.45 | 1000 | 138.0534 | 0.5601 | 0.7432 | 0.1170 |
122.0436 | 0.54 | 1200 | 118.2416 | 0.5636 | 0.7724 | 0.1170 |
117.7194 | 0.63 | 1400 | 116.8705 | 0.5910 | 0.7772 | 0.1170 |
119.8977 | 0.71 | 1600 | 106.7047 | 0.5905 | 0.7833 | 0.1170 |
105.5846 | 0.8 | 1800 | 105.5354 | 0.5756 | 0.7774 | 0.1170 |
106.7833 | 0.89 | 2000 | 101.9971 | 0.5875 | 0.7922 | 0.1170 |
101.8875 | 0.98 | 2200 | 98.1714 | 0.5945 | 0.8016 | 0.1170 |
87.7438 | 1.07 | 2400 | 97.7943 | 0.6040 | 0.7967 | 0.1170 |
86.1916 | 1.16 | 2600 | 93.9310 | 0.6033 | 0.7964 | 0.1170 |
85.3271 | 1.25 | 2800 | 92.3677 | 0.6188 | 0.8146 | 0.1170 |
83.1457 | 1.34 | 3000 | 89.3458 | 0.6028 | 0.8116 | 0.1170 |
79.4126 | 1.43 | 3200 | 86.8935 | 0.6061 | 0.8094 | 0.1170 |
74.7596 | 1.52 | 3400 | 82.3525 | 0.6147 | 0.8224 | 0.1170 |
79.5526 | 1.61 | 3600 | 80.6440 | 0.6116 | 0.8153 | 0.1170 |
76.0212 | 1.7 | 3800 | 80.1555 | 0.6150 | 0.8216 | 0.1170 |
70.2905 | 1.79 | 4000 | 80.9369 | 0.6152 | 0.8177 | 0.1170 |
68.0936 | 1.88 | 4200 | 77.4738 | 0.6181 | 0.8206 | 0.1170 |
72.6116 | 1.97 | 4400 | 75.5524 | 0.6236 | 0.8276 | 0.1170 |
61.0175 | 2.06 | 4600 | 75.7015 | 0.6242 | 0.8249 | 0.1170 |
60.3508 | 2.14 | 4800 | 75.5521 | 0.6253 | 0.8270 | 0.1170 |
57.4103 | 2.23 | 5000 | 75.5138 | 0.6260 | 0.8282 | 0.1170 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 3
Model tree for qmeeus/whisper-small-multilingual-spoken-ner-pipeline-step-1
Dataset used to train qmeeus/whisper-small-multilingual-spoken-ner-pipeline-step-1
Evaluation results
- Wer on facebook/voxpopuli de+es+fr+nlself-reported0.117