metadata
library_name: peft
tags:
- generated_from_trainer
base_model: qmeeus/whisper-small-multilingual-spoken-ner-pipeline-step-1
datasets:
- facebook/voxpopuli
metrics:
- wer
model-index:
- name: WhisperForSpokenNER
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/voxpopuli
type: facebook/voxpopuli
split: de+es+fr+nl
metrics:
- type: wer
value: 0.09799520086694016
name: Wer
WhisperForSpokenNER
This model is a fine-tuned version of /esat/audioslave/qmeeus/exp/whisper_slu/train/whisper-small-spoken-ner on the facebook/voxpopuli de+es+fr+nl dataset. It achieves the following results on the evaluation set:
- Loss: 0.2264
- F1 Score: 0.6872
- Label F1: 0.8325
- Wer: 0.0980
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Label F1 | Wer |
---|---|---|---|---|---|---|
0.2746 | 0.36 | 200 | 0.2602 | 0.6565 | 0.8343 | 0.1090 |
0.2481 | 0.71 | 400 | 0.2465 | 0.6578 | 0.8348 | 0.1022 |
0.2385 | 1.07 | 600 | 0.2410 | 0.6685 | 0.8323 | 0.1048 |
0.2316 | 1.43 | 800 | 0.2374 | 0.6724 | 0.8317 | 0.1022 |
0.2291 | 1.79 | 1000 | 0.2348 | 0.6698 | 0.8292 | 0.0968 |
0.2205 | 2.14 | 1200 | 0.2334 | 0.6745 | 0.8339 | 0.0964 |
0.2211 | 2.5 | 1400 | 0.2319 | 0.6729 | 0.8327 | 0.0961 |
0.2163 | 2.86 | 1600 | 0.2305 | 0.6732 | 0.8300 | 0.0981 |
0.2108 | 3.22 | 1800 | 0.2299 | 0.6734 | 0.8328 | 0.0954 |
0.2104 | 3.57 | 2000 | 0.2297 | 0.6792 | 0.8369 | 0.0992 |
0.2124 | 3.93 | 2200 | 0.2279 | 0.6782 | 0.8346 | 0.0945 |
0.2027 | 4.29 | 2400 | 0.2279 | 0.6790 | 0.8336 | 0.0944 |
0.2055 | 4.65 | 2600 | 0.2275 | 0.6832 | 0.8347 | 0.0949 |
0.209 | 5.0 | 2800 | 0.2269 | 0.6822 | 0.8336 | 0.0983 |
0.2017 | 5.36 | 3000 | 0.2272 | 0.6835 | 0.8346 | 0.0979 |
0.2029 | 5.72 | 3200 | 0.2266 | 0.6819 | 0.8321 | 0.0966 |
0.201 | 6.08 | 3400 | 0.2266 | 0.6800 | 0.8327 | 0.0978 |
0.1985 | 6.43 | 3600 | 0.2267 | 0.6856 | 0.8335 | 0.0995 |
0.1996 | 6.79 | 3800 | 0.2265 | 0.6864 | 0.8343 | 0.0988 |
0.197 | 7.15 | 4000 | 0.2264 | 0.6843 | 0.8347 | 0.0986 |
0.1985 | 7.51 | 4200 | 0.2264 | 0.6838 | 0.8352 | 0.0985 |
0.1999 | 7.86 | 4400 | 0.2263 | 0.6861 | 0.8346 | 0.0978 |
0.1963 | 8.22 | 4600 | 0.2264 | 0.6864 | 0.8318 | 0.0978 |
0.1977 | 8.58 | 4800 | 0.2264 | 0.6875 | 0.8329 | 0.0979 |
0.1961 | 8.94 | 5000 | 0.2264 | 0.6872 | 0.8325 | 0.0980 |
Framework versions
- PEFT 0.7.1.dev0
- Transformers 4.37.0.dev0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1