Llama-3.1-8B-Instruct-EI2-2ep-sft-bs
This model is a fine-tuned version of qfq/Llama-3.1-8B-Instruct-EI1-2ep-sft on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1866
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 16
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.1456 | 100 | 0.2037 |
No log | 0.2911 | 200 | 0.2081 |
No log | 0.4367 | 300 | 0.2095 |
No log | 0.5822 | 400 | 0.2072 |
0.1766 | 0.7278 | 500 | 0.2051 |
0.1766 | 0.8734 | 600 | 0.1987 |
0.1766 | 1.0189 | 700 | 0.2012 |
0.1766 | 1.1645 | 800 | 0.2008 |
0.1766 | 1.3100 | 900 | 0.1960 |
0.1264 | 1.4556 | 1000 | 0.1920 |
0.1264 | 1.6012 | 1100 | 0.1894 |
0.1264 | 1.7467 | 1200 | 0.1877 |
0.1264 | 1.8923 | 1300 | 0.1866 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 10
Model tree for qfq/Llama-3.1-8B-Instruct-EI2-2ep-sft-bs
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct
Finetuned
qfq/Llama-3.1-8B-Instruct-EI1-2ep-sft